
Technical Report
CMU/SEI-90-TR-3
ESDTR-90-204

Carnegie-Mellon University

Software Engineering Institute

1990 SEI Report on
Undergraduate Software
Engineering Education

Gary Ford

March 1990

The following statement of assurance <s more than a statement required lo comply with the federal law This is a sincere statement by the university to assure that all
people are included in the diversity which makes Carnegie Mellon an exciting place. Carnegie Mellon wishes to include people without regard to race, color, national
origin, sex. handicap, religion, creed, ancestry, belief, age. veteran status or sexual orientation

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate m admissions and employment on the basis of race,
color. nationaJ origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964. Title IX of the Educational Amendments of 1972 and Section 504 of the
Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders In addition. Carnegie Mellon does not discriminate m admissions and employment on
the basis of religion, creed, ancestry, belief, age, veteran status or sexual orientation m violation of any federal, state, or local law;, or executive orders. Inquiries concern
mg application of this policy should be directed to the Provost. Carnegie Mellon University. 5000 Forbes Avenue. Pittsburgh. PA 15213. telephone (412) 268-6684 or the
Vice President for Enrollment. Carnegie Mellon University. 5000 Forbes Avenue. Pittsburgh, PA 15213. telephone (412) 268-2056

Technical Report
CMU/SEI-90-TR-3

ESD-TR-90-204
March 1990

1990 SEI Report on Undergraduate
Software Engineering Education

Gary Ford
Software Engineering Curriculum Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
HanscomAFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1990 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

1. Introduction 1
1.1. Background 1
1.2. Issues in Software Engineering Education 2
1.3. Purpose of This Report 3

2. Software Engineering and Computer Science 4
2.1. Definitions of "Software Engineering" 4
2.2. Discussion 7

3. The Need for Undergraduate Software Engineering Education 8
3.1. Trends in Undergraduate Enrollments in the Computer Sciences 8
3.2. Trends in Graduate Enrollments in the Computer Sciences 10
3.3. The Current State of Undergraduate Degree Programs in Software

Engineering 12
3.4. Implications for Software Engineering Education 13

4. Accreditation Issues 14
4.1. ABET Accreditation 15

4.1.1. Purposes and Policies 15
4.1.2. The Range of Engineering Disciplines 17
4.1.3. General Criteria for Engineering Programs 20
4.1.4. Program Criteria for Computer and Similarly Named

Engineering Programs 21
4.1.5. General Criteria for Engineering-Related Programs 22

4.2. CSAB Accreditation 23
4.2.1. Purpose and Policies 23
4.2.2. Program Accreditation Criteria 24

4.3. Accreditation Issues Related to Faculty 25

5. Professional and Licensing Issues 27
5.1. Is Software Engineering a Profession? 27
5.2. Certification of Software Professionals 28
5.3. Licensing of Engineers 28

5.3.1. Definitions 28
5.3.2. Motivation for Licensing 29
5.3.3. Licensing Requirements 30
5.3.4. Code of Ethics 31

6. Strategies for Undergraduate Software Engineering Education 33
6.1. Program Development Strategies 33
6.2. On the Name "Software Engineering" 35
6.3. Speculation on Future Trends 38

CMU/SEI-90-TR-3

7. Designing an Undergraduate Curriculum 40
7.1. Curriculum Objectives 40

7.1.1. Some Ideas from the Literature 40
7.1.2. Describing Educational Objectives 42
7.1.3. Goals and Objectives 42

7.2. Prerequisites 44
7.3. Technical Content of a Curriculum 45

7.3.1. BCS/IEE Curriculum Recommendations 46
7.3.2. ACM and IEEE-CS Curriculum Recommendations 48
7.3.3. Other Recommendations from the Literature 49
7.3.4. Implications of ABET Criteria 49
7.3.5. Implications of CSAB Criteria 51

7.4. Liberal Education Content of a Curriculum 51
7.5. Pedagogical Considerations 52

8. An Exercise in Curriculum Design 54
8.1. Design Constraints 54
8.2. Curriculum Structure 55
8.3. Curriculum Content Sketch 57

8.3.1. Mathematics and Science 57
8.3.2. Engineering Science and Engineering Design 59
8.3.3. Humanities, Social Sciences, and Electives 64

8.4. Descriptions of the Core Courses 65
8.4.1. Software Analysis 1 65
8.4.2. Software Analysis 2 65
8.4.3. Software Analysis 3 66
8.4.4. Software Architectures 1 66
8.4.5. Software Architectures 2 66
8.4.6. Software Architectures 3 67
8.4.7. Software Architectures 4 67
8.4.8. Computer Systems 1 68
8.4.9. Computer Systems 2 68
8.4.10. Computer Systems 3 68
8.4.11. Software Process 1 69
8.4.12. Software Process 2 69
8.4.13. Software Process 3 69
8.4.14. Software Process 4 70

8.5. Course Schedule 70
8.6. Program Evolution Strategy 72

9. Summary and Conclusions 73

Appendix 1. Report on the SEI Workshop on an Undergraduate
Software Engineering Curriculum 76

Appendix 2. Bloom's Taxonomy of Educational Objectives 81

Bibliography 82

ii CMU/SEI-90-TR-3

Table of Figures

Figure 3.1. Growth of degrees in computer sciences

Figure 3.2. Percentage of freshman choosing computer science majors

Figure 3.3. Bachelor's degrees from PhD-granting institutions

Figure 3.4. Master's degrees in computer sciences

Figure 3.5. Doctoral degrees in computer sciences

Figure 4.1. Engineering disciplines with ABET program criteria

Figure 4.2. Examples of names of ABET-accredited programs

Figure 4.3. ABET curriculum content for engineering programs

Figure 4.4. ABET curriculum content for engineering-related programs

Figure 4.5. CSAB curriculum content for computer science programs

Figure 6.1. Names of PhD-granting academic departments

Figure 6.2. Software engineering degree program titles

Figure 8.1. ABET guidelines

Figure 8.2. CSAB guidelines

Figure 8.3. Curriculum structure for software engineering

Figure 8.4. Mathematics and science requirements

Figure 8.5. Curriculum schedule

Figure A2.1. Bloom's taxonomy of educational objectives

9

9

10

11

12

18

19

20

22

25

36

37

55

56

56

59

71

81

CMU/SEI-90-TR-3 in

1990 SEI Report on Undergraduate
Software Engineering Education

Abstract: Fundamental issues of software engineering education are
presented and discussed in the context of undergraduate programs.
Included are discussions of the definition of software engineering and its
differences from computer science, the need for undergraduate software
engineering education, possible accreditation of undergraduate programs,
and prospects for professional certification and licensing of software
engineers. The objectives and content of an undergraduate program are
described, as are strategies for the evolution and implementation of such
programs. An appendix presents a report on the 1989 SEI Workshop on
an Undergraduate Software Engineering Curriculum.

1. Introduction

1.1. Background

The Software Engineering Institute (SEI) was established at Carnegie Mellon
Institute in December 1984, under a contract with the United States Department of
Defense. Its primary mission is to advance the state of the practice of software
engineering by accelerating the transition of promising new methods and technolo-
gies from concept demonstration to routine use. A significant part of the strategy is
to promote software engineering education as a means to help alleviate the chronic
shortage of highly qualified software engineers. In describing the institute's role in
education, the SEI charter states, "It shall also influence software engineering cur-
ricula development throughout the education community."

The SEI Education Program was established to undertake this task. During our
first four years, we concentrated on master's level curriculum development [Ford87,
Ardis89, Gibbs89a, Ford89b]. We believed that this work would provide the quickest
"payoff," in that universities could establish and students could complete a master's
program more quickly than an undergraduate program.

CMU/SEI-90-TR-3

However, because the majority of computer science undergraduates never pursue an
advanced degree, we also believed it to be essential to find ways to increase the soft-
ware engineering capabilities of professionals who earn only a bachelor's degree. In
1989, therefore, we began to investigate undergraduate issues as part of a long-term
strategy for software engineering education.

1.2. Issues in Software Engineering Education

Our investigations of undergraduate software engineering education identified many
of the same issues that we had previously considered in the context of graduate edu-
cation. These included the following:

• What is the definition of software engineering!

• How is software engineering different from computer science?

• Is software engineering a sufficiently mature discipline that a university
degree program is appropriate?

• What are the objectives of a software engineering degree program?

• What is the content of a software engineering degree program?

• Is a bachelor's degree in computer science an essential prerequisite for
meaningful study of software engineering?

In the context of undergraduate education, some additional issues were raised,
including:

• Is undergraduate software engineering education necessary?

• Can software engineering be taught at this level?

• Can an undergraduate software engineering degree program exist only in a
university's engineering school, or can it exist wherever a computer science
department exists?

• Can an undergraduate software engineering degree program be accredited
as an engineering program? As a computer science program?

• Can a graduate of such a program be called a software engineer?

• Can a graduate of such a program be licensed as a professional engineer?

In the remainder of this report we will address these issues. Chapter 2 surveys
some definitions of the term "software engineering" in order to help distinguish it
from computer science. Chapter 3 addresses the necessity of undergraduate soft-
ware engineering. Issues of program accreditation and professional licensing are
investigated in Chapters 4 and 5, respectively. Chapters 6 through 8 present ideas

CMU/SEI-90-TR-3

about how undergraduate programs might evolve. Chapter 9 summarizes the report
and presents our recommendations to the academic community.

Many of these issues were discussed at the SEI Workshop on an Undergraduate
Software Engineering Curriculum, which was held in Pittsburgh on July 21, 1989.
The results of the workshop are summarized in Appendix 1 of this report.

1.3. Purpose of This Report

The SEI is a mission-oriented organization. We accept the premise that software-
based systems will continue to be important to the economy and defense of the
United States. We also accept the premise that education is an essential part of the
solution to the problem of producing, on a continuing basis, a skilled professional
work force of sufficient size to produce those systems. Education will necessarily
occur at many levels, including secondary school, college, and graduate school, plus
continuing education of professionals.

The development of appropriate educational programs is a significant task requiring
the efforts of a large number of individuals and organizations over many years. We
believe it is appropriate for the SEI to undertake activities to accelerate that devel-
opment. One of the first steps is to promote widespread rational discussion of the
issues, problems, and potential solutions of software engineering education. That is
the fundamental purpose of this report.

We recognize that many of the issues addressed by this report are controversial and
have provoked passionate debate. We shall try to present objectively a diverse col-
lection of information that we believe is relevant to software engineering education,
in the hope that it will stimulate increased and more reasoned debate, especially
among educators and software professionals. Readers should keep in mind, how-
ever, that we believe that undergraduate programs in software engineering, what-
ever their formal names may be, are a desirable and inevitable part of the spectrum
of software engineering education.

CMU/SEI-90-TR-3

2. Software Engineering and Computer Science

A fundamental question that arises in discussions of software engineering education
is whether software engineering and computer science are separate disciplines each
deserving academic degree programs. There is no easy answer to this question. To
promote discussion, this chapter presents a selection of the definitions of the term
"software engineering" that have appeared in the literature.

2.1. Definitions of "Software Engineering"

F. L. Bauer, one of the principal organizers of the 1968 NATO conference that led to
the widespread use of the term "software engineering," gives this definition
[Bauer72]:

The establishment and use of sound engineering principles (methods) in
order to obtain economically software that is reliable and works on real
machines.

The IEEE glossary [IEEE83] defines software engineering as:

The systematic approach to the development, operation, maintenance, and
retirement of software.

The National Science Foundation sponsored a study by the American Federation of
Information Processing Societies to develop a taxonomy of computer specialist occu-
pations [NSF88]. The taxonomy includes ten categories: computer scientist,
computer hardware engineer, computer software engineer, telecommunications
specialist, systems programmer, systems analyst, programmer, computer operations
specialist, technical support specialist, and computer trainer. A computer scientist
is defined to be "[a]n individual, usually with an advanced degree, who is engaged as
a theorist, researcher, designer or inventor (or any combination of these roles) in the
fields of computer hardware or software." A software engineer is defined to be "[a]
highly trained specialist, usually with a degree in either engineering or computer
science, who applies state-of-the-art knowledge to the design of overall software
systems, to the setting of operational specifications, quality standards and testing
procedures, and to the definition of user needs." This is distinguished from a pro-
grammer, who is "[a] specialist, usually with a college degree, who writes, tests and
applies the instructions that define the operations performed by a computer."

Software engineering textbooks have also taken up the challenge to define software
engineering. This definition appears in [Fairley85]:

Software engineering is the technological and managerial discipline con-
cerned with systematic production and maintenance of software products
that are developed and modified on time and within cost estimates.

CMU/SEI-90-TR-3

In [Humphrey89], there are a number of basic definitions of terms related to the
software process, including this one of software engineering:

The disciplined application of engineering, scientific, and mathematical prin-
ciples, methods, and tools to the economical production of quality software.

The British Computer Society and the Institution of Electrical Engineers answer the
question "What is software engineering?" with a rather lengthy description [BCS89]:

Software Engineering requires understanding and application of engineering
principles, design skills, good management practice, computer science and
mathematical formalism. It is the task of the Software Engineer to draw
together these separate areas of expertise and bring them to bear upon the
requirements elicitation, specification, design, verification, implementation,
testing, documentation and maintenance of complex and large scale software
systems. The Software Engineer thus fulfils the role of architect of a complex
system, taking account of user requirements and needs, feasibility, cost, qual-
ity, reliability, safety and time constraints. The necessity to balance the rela-
tive importance of these factors according to the nature of the system and the
application gives a strong ethical dimension to the task of the Software
Engineer, on whom the safety or well-being of others may depend, and for
whom, as in medicine or in law, a sense of professional morality is a require-
ment of the job. Sound engineering judgement is required.

The Software Engineer must be able to estimate the cost and duration of the
software development process, and determine the achievement of correctness
and reliability. Such measurement and estimation may involve financial and
managerial understanding as well as sound grasp of mathematical concepts.
The precise use both of formal notations and of words is necessary to express
them with a degree of precision meaningful to other engineers and informed
clients. In most circumstances the technical, theoretical and managerial
strands of the Software Engineer's task cannot be pursued in isolation from
each other.

Both to build large products and to achieve high productivity from skilled
labour, Software Engineering requires the use of software development tools
and of components and reusable components capable of subsequent safe
modification and maintenance.

The task of the professional Software Engineer spans the range of activities
involved in the lifecycle of a software system. Requirements elicitation,
specification, design, verification and construction are all critical in achieving
the quality of the product and are all the responsibility of the Software
Engineer.

Since software determines the behaviour of an automaton, the Software
Engineer needs to understand digital hardware and communications.
Although the discipline of Software Engineering can be identified indepen-
dently of application area, its realisation must be in the context of specific
applications. The Software Engineer must therefore be able to collaborate
with other professionals who bring complementary skills to the task of speci-
fying, designing and constructing a hardware-software system which serves

CMU/SEI-90-TR-3

the needs of the client, makes use of hardware and software solutions in
optimum combination, and provides good quality human-computer interfaces.

Most software is built by teams, often interdisciplinary teams. The ability to
work closely with others is essential.

Some of the intellectual tools and methods of Software Engineering are at
present still in process of development, and rapid change is to be expected for
some time to come. Software Engineers therefore need the theoretical under-
standing which will be a foundation for learning and using new methods in
the future, and the cast of mind which sees the constant updating of knowl-
edge as required professional behaviour.

The report also specifically rejects two usages of the term:

Software Engineering is not simply a more organized approach to program-
ming than that which was prevalent in the early days of computer science
and remains widespread among amateurs or through lack of education and
training.

Software Engineering is not the design of programs to be implemented pri-
marily in traditional engineering applications. It is the software itself which
needs to be engineered, irrespective of its application.

The Software Engineering Institute undertook a small effort to develop a definition
that would be suitable for its own use in planning and explaining its activities:

1. Core definition:

• Engineering is the systematic application of scientific knowledge in creating
and building cost-effective solutions to practical problems in the service of
mankind.

• Software engineering is that form of engineering that applies the principles
of computer science and mathematics to achieving cost-effective solutions to
software problems.

2. Elaborations or interpretations:

• For software, "creating and building" must include maintenance. We have
used the word "achieving" to cover the entire software life cycle.

• "Cost-effective" implies accounting not only for the expenditure of money,
but also clock time, schedule, and human resources. "Cost-effective" also
implies getting good value for resources invested; this value includes qual-
ity by whatever measures are considered appropriate.

• Software engineering is not limited to applying principles only from com-
puter science and mathematics-like any engineering discipline it is based
primarily in principles from one discipline but may draw on whatever prin-
ciples it can take advantage of.

• Similarly, software engineering, like all engineering, draws on the princi-
ples and techniques of management in order to carry out its activities of
"creating and building."

CMU/SEI-90-TR-3

3. Distinction between current use of the phrase "software engineering" and
definition appropriate to SEI mission:

• At present, the phrase "software engineering" has multiple sets of poorly
understood and conflicting meanings, ranging from simple coding to man-
agement to system design. We recognize that the phrase has connotations
we do not accept.

• At present, the phrase "software engineering" is more an aspiration than a
description. This should not deter us from aspiring to the definition above.

2.2. Discussion

[Denning89] includes "software methodology and engineering" as one of the nine
subareas of the computing discipline. On the other hand, [Jensen79b] includes com-
puter science as one of the major components of software engineering education. It
is clear that there is no consensus on whether either field is a subset of the other.

Software engineering and computer science are probably somewhere near the
midpoint of their evolution into distinct disciplines. They will eventually bear a
relationship to each other very much like that of the more traditional engineering
disciplines to their fundamental sciences.

The implications for education will derive primarily from the differences between
science and engineering. We have seen several catchy phrases that try to capture
those differences, such as "The scientist analyzes; the engineer synthesizes,"
[Jensen79b], or "A scientist builds in order to learn; an engineer learns in order to
build," (heard from Fred Brooks; see [Gibbs87], p. 5). The fundamentally different
philosophies of science and engineering will ultimately determine much of the con-
tent and pedagogy of undergraduate programs in the two disciplines.

The most important statement in the preceding definitions is probably this one from
the BCS/IEE report [BCS89]: "Software Engineering is not simply a more organized
approach to programming than that which was prevalent in the early days of com-
puter science and remains widespread among amateurs or through lack of education
and training." Software engineering education will not be achieved by adding mod-
ern programming languages and techniques to existing computer science courses,
nor by adding a group programming course to the curriculum. An engineering
approach to the whole curriculum is necessary. In Chapters 7 and 8 of this report
we describe how this might be achieved.

CMU/SEI-90-TR-3

3. The Need for Undergraduate Software Engineering
Education

From time to time we have seen studies that purport to have quantified the need for
software engineers in the near future. For example, in [OTA89] the Office of
Technology Assessment says, "The shortfall of software professionals in the United
States is estimated at 50,000 to 100,000 and is forecast to grow steadily over the
next decade." The basic assumptions underlying those studies and the resulting
numbers vary widely, so we do not consider any of them to be definitive. However,
we do accept the general premises that computers and software will be increasingly
important in the fabric of society for the indefinite future and that there will be an
increasing need for software professionals.

The educational system generally acknowledges a responsibility to serve the needs
of both the individual and society. Higher education tries to balance these needs by
providing fundamental knowledge, intellectual and reasoning skills, and specific
career knowledge and skills. It is our opinion that a legitimate goal of higher edu-
cation is to produce an appropriate number of graduates who are well prepared both
to function in a technological society and to pursue careers in the computing disci-
plines.

The SEI Education Program has a major goal of assisting the academic community
to provide high-quality software engineering education. As we mentioned in the
introduction, our activities have emphasized master's level education during our
initial four years in order to achieve the quickest "payoff."

Recent evidence, however, supports the premise that the vast majority of the soft-
ware engineering work force will have only an undergraduate degree. Some of that
evidence is presented below. It has led us to the conclusion that we should begin
more substantial efforts to help the academic community to provide better under-
graduate software engineering education.

3.1. Trends in Undergraduate Enrollments in the Computer
Sciences

Trends in computer science enrollments offer some insight into the difficulties we
face in providing a highly qualified software engineering work force. Figure 3.1
(derived from data in [NSF88]) shows reasonably consistent growth in the number of
computer science degrees granted in the United States through the early 1980s, and
then the beginning of a declining growth rate in the mid-1980s. That trend is
perhaps clearer in Figure 3.2, which shows data from [NSB86] on the percentage of
college freshmen choosing computer science majors. (We have also heard that one

8 CMU/SEI-90-TR-3

study places the number of freshmen choosing computer science majors in 1989 at
less than one percent.) Partial data for 1984-1988 is shown it Figure 3.3 (derived
from data in [Gries89]); this data reflects bachelor's degrees in computer science and
computer engineering granted by schools that also grant doctorates in those fields.
This data shows a clear leveling off of the growth rate in the second half of the
1980s. We have also found considerable anecdotal evidence that computer science
enrollments have decreased nationwide since 1985.

Year BS degrees Increase % Increase

1976 5,664 - -

1977 6,426 762 13

1978 7,224 798 12

1979 8,769 1,545 21

1980 11,213 2,444 28

1981 15,233 4,020 36

1982 20,431 5,198 34

1983 24,678 4,247 21

1984 32,435 7,757 31

1985 39,121 6,686 21

1986 42,195 3,074 8

Figure 3.1. Growth of degrees in computer sciences

Year 1983 1984 1985

% CS Majors 8.8 6.1 4.4

Figure 3.2. Percentage of freshman choosing computer science majors

CMU/SEI-90-TR-3 9

Year
CS

BS degrees
CSandCE
BS degrees

1984-85 10,422 -

1985-86 10,947 -

1986-87 10,540 12,643

1987-88 10,759 12,687

1988-89 10,688 12,646

Figure 3.3. Bachelor's degrees from PhD-granting institutions

We have been unable to find reliable explanations for the apparent declining inter-
est in computing. One possibility is that the wide availability of computers in high
schools and in the home has satisfied the students' curiosity about computing before
they reach college. Another speculation is that computing has lost some of its glam-
our along with other technical disciplines as part of a growing societal concern that
technology causes as many problems as it solves. A third possibility is that com-
puter science has simply earned a reputation among students of being difficult,
especially now that it has evolved beyond just learning many programming
languages.

One other fact is worth noting. Demographic statistics [NSB86] show that the num-
ber of 18-year-olds in the United States reached a maximum of about 4.2 million in
each of the years between 1976 and 1982. In the early 1990s, that number will drop
to about 3.3 million, and it will remain below 4 million well beyond the turn of the
century. The combined factors of fewer college-age students and a smaller percent-
age of them choosing computer science majors indicate a potential for a substantial
reduction in the number of new computing professionals in the coming decade.

3.2. Trends in Graduate Enrollments in the Computer Sciences

The number of master's degrees granted in the computer sciences from 1976 to 1986
are shown in Figure 3.4 (derived from data in [NSF88]). These figures suggest that,
in the mid-1980s, only about 20% of computer science students pursued a master's
degree. (We recognize that it is not necessarily the case that students pursue
master's degrees in the same disciplines as their undergraduate degrees.)

10 CMU/SEI-90-TR-3

Year MS degrees Increase % Increase BS degrees MS%ofBS

1976 2,603 - - 5,664 46

1977 2,798 195 7 6,426 44

1978 3,038 240 8 7,224 42

1979 3,055 17 1 8,769 35

1980 3,647 592 19 11,213 33

1981 4,218 571 16 15,233 28

1982 4,935 717 17 20,431 24

1983 5,321 386 8 24,678 22

1984 6,190 869 16 32,435 19

1985 7,101 911 15 39,121 18

1986 8,070 969 14 42,195 19

Figure 3.4. Master's degrees in computer sciences

A more significant statistic is that only 5% of the recipients of computer science
bachelor's degrees in 1984 and 1985 were enrolled as full-time graduate students in
1986, as compared with 25% of students in the sciences as a whole [NSF88]. This
suggests a decrease in the number of master's degrees awarded in the late 1980s.

Again, the reasons for the declining interest in computer science education are not
known. One of the probable reasons that students do not pursue a graduate degree
immediately after receiving a bachelor's degree is that employment opportunities
continue to be very attractive. We have found cases of starting salaries of almost
$60,000.

The number of doctoral degrees in the computer sciences continues to increase, as
shown in Figure 3.5 (derived from data in [Gries89]). Based on conversations with
colleagues, we believe that only a small percentage of PhD students are working in
software engineering, but that percentage may be increasing.

CMU/SEI-90-TR-3 11

Academic
Year

CS
PhD degrees

CS and CE
PhD degrees

1980-81 230 -

1984-85 326 -

1985-86 412 -

1986-87 466 559

1987-88 577 744

Figure 3.5. Doctoral degrees in computer sciences

3.3. The Current State of Undergraduate Degree Programs in
Software Engineering

In [Ardis89], the SEI described eleven master's level programs in software engineer-
ing at United States universities. In this report we would like to describe the corre-
sponding undergraduate programs, but there are currently none to report. However,
we are aware of some schools that are actively investigating or developing under-
graduate software engineering curricula.

The Florida Institute of Technology has committed to the development of a six-
quarter (freshman-sophomore) sequence in formal program development for all com-
puter science majors. The course development is being led by Harlan Mills (who is
now a member of the FIT faculty), and the course content incorporates much of
Mills' work on formal methods, including the "cleanroom'' techniques. The school
intends to develop additional software engineering courses for the junior and senior
years, providing a complete program in software engineering. This program will
replace their current computer science program.

The Rochester Institute of Technology is developing a four-semester sequence begin-
ning with an introduction to software engineering at the sophomore level. The
remaining three courses (juiiior-senior) are software specification and design, soft-
ware testing and reliability, and a project course. Currently this sequence is a con-
centration within a computer science curriculum. Some of the faculty are hoping
this concentration will expand to more courses over the next few years.

The University of Houston at Clear Lake has reported to us that they are trying to
develop an undergraduate software engineering degree program. We do not have
details of their progress.

12 CMU/SEI-90-TR-3

In contrast, there are nearly 1000 colleges and universities in the United States that
offer degrees in computer science. We believe that 10% to 20% of those schools could
eventually offer undergraduate software engineering degrees. We hope to report
their progress in the SEI's annual reports on undergraduate software engineering
education.

3.4. Implications for Software Engineering Education

The facts described above have led us to conclude that, in the foreseeable future, the
vast majority of new software engineers will have only a bachelor's degree and that
their degrees will not be in software engineering. Most software engineers will
complete their careers without an advanced degree. We therefore believe that those
of us concerned about the quality and quantity of the software engineering work
force should devote more of our efforts directly to improving the state of undergrad-
uate software engineering education.

Part of the solution is to find ways to attract more of the best-qualified freshmen to
study software engineering. Professional disciplines, including engineering, are
widely respected in our society and continue to attract students. We hope that as
the software engineering discipline matures, it will earn its share of respect, and
more students will choose it as a career. Ultimately, software engineering may be
more attractive to students than computer science. For the immediate future, how-
ever, we must undertake more direct efforts to attract students.

Students will explore career options only in areas with which they have some famil-
iarity. Thus, it may be valuable to promote at the high school and college freshman
level a wider understanding of the nature of software engineering and its intellec-
tual challenges. It will also be valuable to target women and minorities, who have
traditionally been underrepresented in the engineering profession.

Once we have attracted these students, the academic community must be prepared
to provide appropriate educational opportunities to them. This will require the
development of undergraduate courses, curricula, and faculty expertise. The SEI's
Software Engineering Curriculum Project has a major goal of assisting schools and
individual faculty members in this effort.

CMU/SEI-90-TR-3 13

4. Accreditation Issues

As undergraduate software engineering programs begin to emerge, pressure for
accreditation is likely to follow. Therefore, designers of such programs should be
familiar with the potential accrediting agencies and their policies. The purpose of
this chapter is to present relevant basic information on accreditation issues.

Accreditation has long been recognized as a mechanism for helping assure quality of
educational institutions and academic programs. It has been especially significant
in disciplines leading to professional practice, such as engineering. Accreditation of
computer science programs began in the 1980s, resulting in increased awareness of
issues of accreditation among educators and students. It is not surprising that dis-
cussions of undergraduate software engineering programs often include accredita-
tion issues.

There are two accrediting bodies in the United States that might accredit software
engineering programs: the Accreditation Board for Engineering and Technology and
the Computing Sciences Accreditation Board. We will discuss each of these bodies in
this chapter.

Before looking at these issues in some detail, we should note that the goal of accredi-
tation is to define minimum standards for programs and that accreditation does not
guarantee high quality (by whatever definition of quality we choose). Furthermore,
accreditation is not universally accepted as important for the success of a program.
Schools that are generally regarded as among the best in the world (such as Harvard
University and the California Institute of Technology) have engineering programs
that are not accredited.

Our discussions of these issues with engineering deans, computer science depart-
ment chairs, and faculty members have uncovered a variety of concerns about the
value of accreditation. Some have told us that the accreditation guidelines are too
restrictive or too vocational. It seems likely that many very good computer science
programs will never seek accreditation. Some accredited engineering programs may
not seek renewal because the effort involved does not produce commensurate bene-
fits. Thus, it is not necessarily the case that schools considering introducing a soft-
ware engineering program must put accreditation at the top of their lists of issues.
On the other hand, many large industrial companies have policies that they will only
hire engineers who are graduates of accredited programs. This fact can be very
important to students in their career planning.

14 CMU/SEI-90 -TK-3

4.1. ABET Accreditation

The Accreditation Board for Engineering and Technology, Inc. (ABET) is recognized
by the U. S. Department of Education and the Council on Postsecondary
Accreditation (COPA) as the sole agency responsible for accreditation of educational
programs leading to degrees in engineering. Prior to January 1980, ABET was
known as the Engineers' Council for Professional Development (ECPD). Under that
name it first addressed accreditation of engineering programs in 1933.

ABET publishes a number of documents describing its policies, procedures, and
accreditation criteria. We strongly recommend that educators or schools considering
development of undergraduate software engineering tracks or programs obtain
copies of these documents. ABET is located at 345 East 47th Street, New York, NY
10017; telephone (212) 705-7685.

In the next five sections, we examine the policies and criteria of ABET that we
believe to be particularly interesting or potentially relevant to software engineering
programs. The information presented is taken from [ABET88]. In Chapters 7 and 8
we discuss implications, interpretations, and relevance of these criteria for the
design of a software engineering curriculum.

4.1.1. Purposes and Policies

Purposes. In its "Statement of Principles," ABET describes its purposes:

The purposes of ABET shall be the promotion and advancement of engineer-
ing education with a view to furthering the public welfare through the devel-
opment of the better educated and qualified engineer, engineering technolo-
gist, engineering technician and others engaged in engineering or engineer-
ing-related work.

To achieve these purposes ABET shall:

(1) Organize and carry out a comprehensive program of accreditation of
pertinent curricula leading to degrees, and assist academic institutions
in planning their educational programs.

(2) Promote the intellectual development of those interested in engineering
and engineering-related professions, and provide technical assistance to
agencies having engineering-related regulatory authority applicable to
accreditation.

It also states that one of the specific objectives of accreditation is "[t]o provide guid-
ance for the improvement of existing programs in engineering education and for the
development of future programs."

Program titles. Section II.A.10.C of ABETs criteria for accrediting programs in
engineering states, "All engineering programs must include the word 'engineering' in

CMU/SEI-90-TR-3 15

the program title." Section 7.2 of this report addresses the issue of possible names of
undergraduate software engineering programs.

When to seek accreditation. The accreditation process requires an on-site visit
by an ABET accreditation team. Section II.A.9 of the accreditation criteria states, in
part, that it is a basic policy "[t]o grant initial accreditation only if students have
graduated from a program prior to the on-site visit." This policy answers a question
we have often heard, "Is it possible to create a new engineering program without
ABET accreditation?" Clearly, it is not only possible, it is necessary.

Program level. ABET will accredit both bachelor's and master's degree programs.
However, it will not accredit programs at both levels in the same discipline at the
same institution (Section II.A.4). A number of schools have already established
master's programs in software engineering (see [Ardis89] for descriptions of several
of these), so it is possible for those who advocate ABET accreditation of software
engineering programs to develop and propose accreditation criteria first for these
programs.

Related programs. ABET also accredits engineering technology and engineering-
related programs. Excerpts of ABETs definitions of such programs are quoted
below:

Engineering Technology is that part of the technological field which requires
the application of scientific and engineering knowledge and methods com-
bined with technical skills in support of engineering activities; it lies in the
occupational spectrum between the craftsman and the engineer at the end of
the spectrum closest to the engineer. ... Graduates of baccalaureate pro-
grams are called "engineering technologists."

[Engineering-related programs] to be considered are conducted in the field of
higher technical education, with close practical and academic ties with engi-
neering. The programs do not fall under the strict engineering or engineering
technology definitions. The mathematics, basic sciences, and humanities con-
tent of the engineering-related programs are similar to those contained in
engineering and engineering technology programs; however, some of the
engineering science and engineering design components contained in a typi-
cal engineering program are replaced by the engineering-related specialties.
The programs should consist of a cohesive set of courses sequenced so that
reasonable depth is obtained in the upper level courses. Certain programs
may prepare graduates for practice at a professional level in an engineering-
related specialty which cannot be classified as engineering or engineering
technology. However, such programs derive their professional nature from
specific professional-entry curriculum requirements imposed by the program
criteria that a cognizant technical society has submitted to the ABET Board
of Directors for approval.

We have heard suggestions among educators that software engineering, at least at
its current state of development, might be better classified as an engineering tech-
nology or an engineering-related field. We have also heard predictions that as the

16 CMU/SEI-90-TR-3

discipline matures, it will have both engineering and engineering technology compo-
nents (see Section 6.3 of this report).

4.1.2. The Range of Engineering Disciplines

The ABET program accreditation criteria consist of common criteria that apply to all
programs and separate criteria for programs in individual engineering disciplines.
These latter criteria are developed by an appropriate professional society (or several
societies, with one being designated as the lead society) and then reviewed and
approved by ABET. Figure 4.1 shows the wide range of these disciplines and their
professional societies.

The names of accredited programs vary even more widely. Recognizing this variety,
the accreditation categories are described by ABET under headings such as
"Program Criteria for Aerospace and Similarly Named Engineering Programs." In
addition, ABET provides a category called "Nontraditional Programs" for programs
that are not covered by specific program criteria developed by a professional society.
Figure 4.2 gives examples of the names of several accredited programs and their
categories. (Note that several of the program names seem to violate the ABET
requirement that the word "engineering" appear in program names.)

The accredited programs in the computer engineering category are of particular
interest to those concerned with the possibility of future accreditation of software
engineering programs. First, notice that in this category are programs named com-
puter science and engineering (at least eleven schools have such programs). We
understand that ABET and the Computing Science Accreditation Board (CSAB)
have recently agreed that such programs must, in the future, be accredited by both
ABET and CSAB. This is consistent with ABETs rule that programs bearing the
name of two engineering categories must be accredited in both.

Second, notice that the computer engineering category includes a program named
computer science. An obvious question, in light of the cooperation between ABET
and CSAB, is whether this program will continue to be accredited by ABET under
this name.

The fact that there is such a variety of programs in the computer engineering cate-
gory raises the possibility that future software engineering programs might be.
accredited according to the existing (or future) ABET criteria in this category. We
will examine those criteria in the next two sections.

CMU/SEI-90-TR-3 17

Program Name Professional Society (* Lead Society)

Aerospace American Institute of Aeronautics and Astronautics

Agricultural American Society of Agricultural Engineers

Bioengineering Institute of Electrical and Electronics Engineers'"

Ceramics National Institute of Ceramic Engineers

Chemical American Institute of Chemical Engineers

Civil American Society of Civil Engineers

Computer Institute of Electrical and Electronics Engineers*

Construction American Society of Civil Engineers

Electrical Institute of Electrical and Electronics Engineers

Engineering Management Institute of Industrial Engineers*

Engineering Mechanics American Society of Mechanical Engineers*

Environmental, Sanitary American Academy of Environmental Engineers*

Geological Society of Mining Engineers of AIME

Industrial Institute of Industrial Engineers

Manufacturing Society of Manufacturing Engineers

Materials Metallurgical Society*

Mechanical American Society of Mechanical Engineers

Metallurgical Metallurgical Society*

Mining Society of Mining Engineers of AIME

Naval Architecture and
Marine Engineering

Society of Naval Architects and Marine Engineers

Nuclear American Nuclear Society

Ocean Society of Naval Architects and Marine Engineers*

Petroleum Society of Petroleum Engineers of AIME

Surveying American Congress on Surveying and Mapping*

Figure 4.1. Engineering disciplines with ABET program criteria

18 CMU/SEI-90-TR-3

Accreditation
Category Program Name

Aerospace Aeronautical Engineering
Aeronautics and Astronautics
Astronautical Engineering

Agricultural Biological Engineering
Forest Engineering

Ceramic Ceramic Science
Glass Science

Computer Computer and Electrical Engineering
Computer and Information Engineering Sciences
Computer and Systems Engineering
Computer Science
Computer Science and Engineering
Computer Systems Engineering

Construction Structural Engineering

Electrical Electric Power Engineering
Electrical Engineering and Computer Science
Microelectronic Engineering

Environmental,
Sanitary

Environmental Resources Engineering

Materials Materials Science

Petroleum Natural Gas Engineering

Nontraditional Architectural Engineering
Engineering and Public Policy
Engineering Physics
Fire Protection Engineering
Fluid & Thermal Sciences
Food Process Engineering
Plastics Engineering
Polymer Science
Systems Analysis and Engineering
Systems and Control Engineering
Systems Engineering
Textile Engineering
Welding Engineering

Figure 4.2. Examples of names of ABET-accredited programs

CMU/SEI-90-TR-3 19

4.1.3. General Criteria for Engineering Programs

The general criteria for engineering programs include sections on faculty, curricular
objective and content, student body, administration, institutional facilities, and
institutional commitment. We will look briefly at the curriculum content criteria in
this section. We recommend that schools and individuals interested in engineering
curricula look at the entire accreditation criteria document from ABET because it
contains a wealth of other important information.

The curriculum content is described in several categories: mathematics, basic
sciences, engineering sciences, engineering design; humanities and social sciences,
laboratory experience, computer-based experience, written and oral communication,
and the ethical, social, economic, and safety considerations of engineering practice.
The minimum curriculum requirements are summarized in Figure 4.3, where the
requirement is measured as a percentage of the entire program.

Requirement ABET Content Category

25% Mathematics and Basic Sciences

25% Engineering Sciences

12.5% Engineering Design

12.5% Humanities, Social Sciences

25% Electives

Figure 4.3. ABET curriculum content for engineering programs

The mathematics requirement includes differential and integral calculus and differ-
ential equations. Additional work is encouraged in probability and statistics, linear
algebra, numerical analysis, and advanced calculus.

The basic sciences requirement is intended to give students fundamental knowledge
about nature and its phenomena, including quantitative expression. It includes
chemistry and physics, with a two-semester sequence in either area. Additional
science may also be in the life sciences or earth sciences, as appropriate to a particu-
lar engineering discipline.

The engineering sciences are described as having their roots in mathematics and
basic sciences but carrying knowledge further toward creative application. They
provide a bridge between mathematics/basic sciences and engineering practice.
Examples are mechanics, thermodynamics, electrical and electronic circuits, materi-
als science, transport phenomena, and computer science (other than computer

20 CMU/SEI-90-TR-3

programming skills). The requirement includes at least one engineering science
course outside the major discipline area.

Engineering design lies at the heart of an engineering curriculum. ABET defines it
in this way:

Engineering design is the process of devising a system, component, or process
to meet desired needs. It is a decision-making process (often iterative), in
which the basic sciences, mathematics, and engineering sciences are applied
to convert resources optimally to meet a stated objective. Among the funda-
mental elements of the design process are the establishment of objectives and
criteria, synthesis, analysis, construction, testing, and evaluation. The engi-
neering design component of a curriculum must include at least some of the
following features: development of student creativity, use of open-ended
problems, development and use of design methodology, formulation of design
problem statements and specifications, consideration of alternative solutions,
feasibility considerations, and detailed system descriptions. Further, it is
essential to include a variety of realistic constraints such as economic factors,
safety, reliability, aesthetics, ethics, and social impact.

The humanities and social sciences component of the curriculum must be designed
not only to meet the general objectives of a broad education, but must also fulfill an
objective appropriate to the engineering profession. The coursework must make
students aware of their social responsibilities as engineers. It cannot be a selection
of unrelated introductory courses.

The laboratory requirement normally includes both basic science and engineering
design laboratories. These need not be separate courses, but may be integral parts
of other courses.

The computer-based experience requirement includes the use of computers in sup-
port of engineering activities, such as technical calculation, problem solving, data
acquisition and processing, process control, or computer-assisted design.

The requirements for communications skills and societal issues are normally dis-
tributed across the curriculum rather than being structured as independent courses.

4.1.4. Program Criteria for Computer and Similarly Named Engineering
Programs

Program criteria for computer engineering were submitted by the Institute of
Electrical and Electronics Engineers in cooperation with the Institute of Industrial
Engineers. These criteria amplify, rather than supplant, the general program crite-
ria described in the previous section.

Our research into ABET accreditation was based on a document published in 1988
[ABET88]. As might be expected, program criteria for any engineering program
must evolve to keep pace with the advances in the discipline. The 1988 document

CMU/SEI-90-TR-3 21

included proposed changes for the next edition, and it is these proposed criteria that
are reflected in the discussion below.

The overall curriculum structure for a computer engineering program must provide
breadth across the field of computer science and engineering, both hardware and
software. Depth must be attained in at least one area of computer science and engi-
neering.

The mathematics requirement includes discrete mathematics, probability and statis-
tics, and either linear algebra or numerical methods.

The engineering science and design courses must provide a balanced view of hard-
ware, software, application tradeoffs, and the basic modeling techniques used to
represent the computing process.

A strong laboratory sequence of hardware and software development experiences
must provide the student with an appropriate range of problem solving, design,
implementation, documentation and oral presentation activities and the use of a
variety of hardware and software tools.

4.1.5. General Criteria for Engineering-Related Programs

The definition of engineering-related programs appeared in Section 5.1.1 of this
report. We include a brief discussion of the accreditation criteria for such programs
because we have heard suggestions that software engineering might fit better in this
classification than in engineering.

The overall curriculum requirements are shown in Figure 4.4.

Requirement ABET Content Category

19% Mathematics and Basic Sciences

38% Engineering-Related Sciences and
Engineering-Related Specialties

18% Humanities, Social Sciences

25% Electives

Figure 4.4. • ABET curriculum content for engineering-related programs

The ABET descriptions of engineering-related sciences and engineering-related
specialties are as follows:

22 CMU/SEI-90-TR-3

Engineering-related sciences have their roots in mathematics and basic
sciences, but carry knowledge further toward creative application. When a
field of mathematics or basic science proves pertinent to an engineering-
related application, there develop corresponding courses in engineering-
related science to afford a bridge between the basic science and engineering-
related practice.

The requirements for coursework in engineering-related specialties have been
established in recognition of the need to reorient the student toward special-
ized practice in the engineering-related discipline. In specialized practice,
the needs and problems of society are treated by innovative application of the
technological foundations of mathematics, basic sciences, and engineering-
related sciences to achieve viable solutions. Among the fundamental ele-
ments of the problem solving process are the establishment of objectives and
criteria, synthesis, analysis, and evaluation. The specialized practice compo-
nent of a curriculum should include some of the following features: develop-
ment of student creativity, use of open-ended problems, formulation of prob-
lem statements and specifications, consideration of alternative solutions,
feasibility considerations, and detailed solution descriptions. It is also impor-
tant to include a variety of realistic constraints such as economic factors,
safety, reliability, aesthetics, ethics, and social impact. Courses that include
specialized practice may be included at all levels of the program. However,
the major portion of the engineering-related specialties requirement is to be
satisfied by courses that follow mathematics, basic sciences and engineering-
related sciences.

4.2. CSAB Accreditation

The Computing Sciences Accreditation Board (CSAB) was formed as a corporation in
the state of New York on January 8, 1985. Its creation was the result of more than
two years of work by the Association for Computing Machinery (ACM) and the
Computer Society of the Institute of Electrical and Electronics Engineers (IEEE-CS).
A more detailed history of CSAB is presented in [Cain86]. CSAB's Computer
Science Accreditation Commission (described below) is recognized by the United
States Secretary of Education and by the Council on Postsecondary Accreditation as
the nationally recognized agency for the evaluation and accreditation of baccalaure-
ate programs in computer science. The material presented below is from [CSAB87],
which is available from CSAB, 345 East 47th Street, New York, NY 10017; tele-
phone (212) 705-7314.

4.2.1. Purpose and Policies

CSAB's constitution defines its purpose as "... to advance the development and prac-
tice of the computing sciences in the public interest through the enhancement of
quality educational programs in the computing sciences. The term 'computing
sciences' is defined to include the broad spectrum of computer disciplines."

CMU/SEI-90-TR-3 23

The fact that the phrase "computing sciences" in CSAB's title is plural implies that
there may be more than just "computer science" in the domain of accreditable pro-
grams. In fact, CSAB is structured to allow creation of accreditation commissions,
each of which is responsible for developing accreditation criteria for a specific area of
the computing sciences. The first (and currently only) accreditation commission is
the Computer Science Accreditation Commission (CSAC). Its criteria for accredita-
tion of computer science programs are discussed in the next section.

At least one other accreditation commission, for information systems, is being dis-
cussed [Gorgone89]. It is conceivable that an accreditation commission for software
engineering could be established within CSAB, although we would expect the use of
the word "engineering" in its title to be controversial, given the current cooperative
understandings between CSAB and ABET. On the other hand, an accreditation
commission within CSAB, perhaps with a more neutral name such as "software
systems," may be an appropriate mechanism for accrediting programs in colleges
and universities that do not have engineering schools. These issues deserve addi-
tional consideration and discussion.

The basic policies of CSAB are very similar to those of ABET. In fact, the wording of
many policies is identical for both organizations. Of interest to developers of new
programs is the policy to grant accreditation only if students have already been
graduated. Also, like ABET, CSAB has a policy "[t]o avoid applying minimum stan-
dards in a way that would discourage well-planned experimentation."

4.2.2. Program Accreditation Criteria

Despite the short history of the CSAB accreditation criteria for computer science
programs, there has already been one major revision. This was partly a result of
concern expressed during and after the first cycle of accreditation visits that the cri-
teria required too many technical courses for a liberal arts curriculum (see [Gibbs86]
for a discussion of computer science curricula for liberal arts colleges). The most
significant changes in the revised criteria are a reduction in computer science con-
tent from one and one-half years to one and one-third years and a slight reduction in
the overall mathematics and science requirements.

The curriculum criteria are summarized in Figure 4.5. The requirements are stated
in [CSAB87] in a combination of measures (semester courses, years); so to determine
the percentage requirements, we assume a total requirement of 120 semester
hours1, with each course being 3 semester hours.

* Note for readers not familiar with United States universities: A semester hour represents one contact
hour (usually lecture) and two to three hours of outside work by the student per week for a semester of
about fifteen weeks. A course covers a single subject area of a discipline and typically meets three
hours per week, for which the student earns three semester hours of credit. A course with a laboratory
component might give four semesters hours of credit.

24 CMU/SEI-90-TR-3

Requirement Percentage CSAB Content Category

0.5 year 12.5% Mathematics

2 courses 5% Laboratory Science Sequence

2 courses 5% Science or Quantitative Methods

1.33 years 33.3% Computer Science

40-60% of CS 13-20% Core

60-40% of CS 20-13% Advanced

1 year 25% Humanities, Social Sciences, Arts

1 course 2.5% Other Required Course

0.67 year 16.7% Free Electives

Figure 4.5. CSAB curriculum content for computer science programs

The computer science core requirement specifies a "reasonably even emphasis over
the areas of theoretical foundations of computer science, programming languages,
and computer elements and architecture. Within this portion of the program, analy-
sis and design experiences with substantial laboratory work, including software
development, should be stressed." The advanced computer science courses should
"insure that depth of knowledge is obtained in at least one-half of the core material."

The mathematics requirement includes discrete mathematics, differential and inte-
gral calculus, and probability and statistics. The science requirement includes a
two-semester sequence in a laboratory science, plus two additional courses. These
may be either science courses or courses with strong emphasis on quantitative
methods. Oral and written communication skills are also required, although not
necessarily through a separate course.

4.3. Accreditation Issues Related to Faculty

Both ABET and CSAB specify other accreditation criteria that may affect the devel-
opment of undergraduate software engineering programs. In particular, both
address the issue of the number and competence of the faculty.

ABETs general criteria suggest that three full-time faculty members are necessary
for a minimal program; the criteria for computer engineering and similarly named
programs say that five full-time faculty are necessary. The criteria for nontradi-
tional engineering programs state [ABET88]:

CMU/SEI-90-TR-3 25

In small institutions with strong departments of basic science and no other
engineering programs, at least four faculty members educated as engineers
or with extensive engineering experience are necessary to provide the engi-
neering philosophy and application in the program.

CSAB criteria suggest a minimum of five full-time-equivalent faculty, of which four
should be full-time faculty with primary commitment to the program. Full-time fac-
ulty should cover at least 70% of the total classroom instruction.

Professional competence of faculty is addressed by both ABET and CSAB. In addi-
tion to the expected requirements that most faculty hold the terminal degree and
that they pursue scholarly activities, ABET also mentions the desirability of their
being licensed as professional engineers.

These requirements will be impediments to the development of new programs. As
far as we know, no United States university offers a doctorate in software engineer-
ing, and the number of computer science doctoral students doing research in soft-
ware engineering is still relatively small. Software engineering professionals with
terminal engineering degrees are very much in demand in industry, so it is difficult
to recruit them for faculty positions.

What constitutes scholarly activity in software engineering is widely debated.
Among funding agencies, software engineering has not yet achieved the status or
level of support as have many other engineering disciplines and computer science.
Furthermore, empirical research will probably require substantial participation by
the software industry, a large segment of which considers its knowledge of software
engineering to be proprietary. Much work remains to be done to develop a national
infrastructure in support of software engineering research and other scholarly
activity.

Given our recent experience with a prolonged shortage of good computer science
faculty members as computer science emerged as a discipline, it is not surprising
that software engineering faculty are difficult to obtain. The most feasible short-
term solution may be to convert computer science faculty into software engineering
faculty. Therefore, a school considering the development of an undergraduate soft-
ware engineering program in the future should begin investing in faculty develop-
ment now.

26 CMU/SEI-90-TR-3

5. Professional and Licensing Issues

5.1. Is Software Engineering a Profession?

In the United States, engineering is generally considered a profession subject to a
variety of standards and regulations. Whether software engineering can or should
eventually be included in the profession has been a topic of much discussion.

The U. S. Government addressed this issue in the 1984 Code of Federal Regulations
([US84], Vol. 29, §541.302 (h)):

The question arises whether computer programmers and systems analysts in
the data processing field are included in the learned professions. At the
present time there is too great a variation in standards and academic
requirements to conclude that employees employed in such occupations are a
part of a true profession recognized as such by the academic community with
universally accepted standards for employment in the field.

David Lamb addresses the question "What is a profession?" in [Lamb88]. He consid-
ers the classic professions (of perhaps 200 years ago) of doctor, lawyer, and priest.
Four key characteristics of these professions were:

1. Extensive schooling to master a body of specialized knowledge

2. A period of apprenticeship

3. A restricted title or license to practice

4. A self-governing professional organization with the power to impose sanc-
tions against unethical or incompetent members

He suggests that today the two key characteristics of a professional are competence
and individual responsibility. The report elaborates these characteristics in the
context of software engineering, including issues related to education.

[Barnes88] argues that computer science is a profession and describes the attributes
of a professional. Much of the discussion can be applied to software engineering.

If we accept the premise that software engineering is or will become a profession,
then it is appropriate to consider professional certification and licensing of software
engineers. Informally, we describe certification as a voluntary practice administered
by the profession itself, and licensing as a mandatory practice administered by gov-
ernment. We examine both of these practices in this chapter.

CMU/SEI-90-TR-3 27

5.2. Certification of Software Professionals

Licensing or certification of software professionals is a topic being widely debated.
We have heard many suggestions that software engineering cannot be considered an
engineering profession until its practitioners are licensed like other engineers.

In [Preiss89], the IEEE Computer Society Committee on Public Policy (COPP)
reports, "COPP believes that certification of developers of critical-mission software
needs a penetrating review and a IEEE Computer Society position." The report also
states that "the Computer Society Board of Governors has a standing position, since
November 1982, opposing any action by the Institute for Certification of Computer
Professionals (ICCP) to establish a certification program for software engineering."
We have heard informally that ICCP is now actively developing just such a program.

The Information Systems Security Association believes that one branch of the soft-
ware profession, information systems security, has matured sufficiently to warrant a
certification program. A consortium of organizations is currently developing such a
program. They state that "any program to license professionals must include a code
of ethics, codes of conduct and good practice, a defined body of knowledge, a uniform
examination and certification, an apprenticeship or intern program, an accredited
higher education program, a continuing education requirement and/or a recertifica-
tion procedure, an oversight by society (namely laws), and an image in the mind of
the public." [Preiss89]

5.3. Licensing of Engineers

For most computer science educators and students, professional licensing of engi-
neers is not a familiar concept. To help identify and elucidate some of the issues, we
examined the Pennsylvania law regarding the licensing of engineers. It is our
understanding that the laws of most of the states are similar.

5.3.1. Definitions

The Pennsylvania Professional Engineers Registration Law [Pennsylvania84]
includes these definitions:

"Practice of Engineering" shall mean the application of the mathematical and
physical sciences for the design of public or private buildings, structures,
machines, equipment, processes, works or engineering systems, and the con-
sultation, investigation, evaluation, engineering surveys, planning and
inspection in connection therewith, the performance of the foregoing acts and
services being prohibited to persons who are not licensed under this act as
professional engineers unless exempt under other provisions of this act.
[§2.(a)(l)]

28 CMU/SEI-90-TR-3

The term "Practice of Engineering" shall also mean and include related acts
and services that may be performed by other qualified persons, including but
not limited to, municipal planning, incidental landscape architecture, teach-
ing, construction, maintenance and research but licensure under this act to
engage in or perform any such related acts and services shall not be required.
[§2.(aX2)]

The "Practice of Engineering" shall not preclude the practice of other sciences
which shall include but not limited to: soil science, geology, physics and
chemistry. [§2.(aX4)l

It is certainly possible to interpret the definition in §2.(aXl) to include the develop-
ment of software systems, especially embedded systems. Many techniques of soft-
ware engineering are applications of mathematical sciences. Algorithms and their
implementations could be considered processes, and embedded systems can be con-
sidered engineering systems. We are unaware, however, of any case law that estab-
lishes precedents regarding the inclusion of software engineering under this act.

5.3.2. Motivation for Licensing

The motivation for professional licensing of engineers is contained in this section of
the law:

In order to safeguard life, health or property and to promote the general
welfare, it is unlawful for a person to practice or to offer to practice engi-
neering in this Commonwealth, unless he is licensed and registered under
the laws of this Commonwealth as a professional engineer, or for any person
to practice or to offer to practice land surveying, unless he is licensed and
registered under the laws of this Commonwealth as a professional land
surveyor. [§3.(a)]

A person shall be construed to practice or offer to practice engineering or land
surveying who practices any branch of the profession of engineering or land
surveying, or who, by verbal claim, sign, advertisement, letterhead, card, or
in any other way represents himself to be an engineer or land surveyor, or
through the use of some other title implies that he is an engineer or land sur-
veyor or that he is registered under this act; or who holds himself out as able
to perform, or who does perform any engineering service or work or any other
service designated by the practitioner or recognized as engineering or land
surveying. [§3.(b)]

The pervasiveness of software-based systems in our society has led to a number of
instances of threats to life, health, or property because of software errors. Software
Engineering Notes, the newsletter of the ACM Special Interest Group on Software
Engineering, publishes a column in each issue titled "Risks to the Public in
Computers and Related Systems," which contains reports of apparent or proven
computer-related risks. Some of the reports describe loss of life or loss of significant
amounts of property. As such incidents grow in number and severity, we believe it is

CMU/SEI-90-TR-3 29

likely that society, as embodied in its legislative and judicial systems, will attempt to
regulate the developers of software-based systems.

5.3.3. Licensing Requirements

The section [§4.(b)] in the Pennsylvania law that defines licensing requirements
begins:

The [State Registration Board for Professional Engineers] shall have power-

Licensing Professional Engineers.—To provide for and to regulate the
licensing, and to license to engage in the practice of engineering any person of
good character and repute who is at least in his twenty-fifth year of age, and
who speaks and writes the English language, if such person either- ...

The law then specifies four alternative sets of requirements for licensing. The first
two are reciprocal agreements based on a person having been licensed by another
recognized licensing authority (such as another state or country). The third set of
requirements applies to persons with engineering degrees (§4.(b)(3) below) and the
fourth to persons without such degrees {§4.(b)(4) below):

Has had four or more years' progressive experience in engineering work,
under the supervision of a professional engineer or a similarly qualified engi-
neer, of a grade or character to fit him to assume responsible charge of the
work involved in the practice of engineering, and is either an engineer-in-
training or a graduate in engineering of an approved institution or college
having a course in engineering of four or more years, or has had four or more
years of progressive experience in engineering work, teaching in an approved
institution or college, and who is a graduate of an approved institution or
college having a course in engineering of four or more years and who in either
event successfully passes written examinations prescribed by the board in
engineering subjects. In the case of the examination of an engineer-in-train-
ing his examination shall be directed and limited to those matters which will
test the applicant's ability to apply the principles of engineering to the actual
practice of engineering. In the case of an applicant who is not an engineer-in-
training the examinations will be for the purpose of testing the applicant's
knowledge of fundamental engineering subjects, including mathematics and
the physical sciences and those matters which will test the applicant's ability
to apply the principles of engineering to the actual practice of engineering. ...
[§4.(b)(3)]

Has had twelve or more years of progressive experience in engineering work,
at least eight years of which shall have been under the supervision of a pro-
fessional engineer or similarly qualified engineer, of a grade and character to
fit him to assume responsible charge of the work involved in the practice of
engineering, and who successfully passes written examinations prescribed by
the board for the purpose of testing the applicant's knowledge of fundamental
engineering subjects, including mathematics and the physical sciences and
those matters which will test the applicant's ability to apply the principles of

30 CMU/SEI-90-TR-3

engineering to the actual practice of engineering. To be licensed under this
subsection, the person shall be required to successfully pass the examinations
prescribed by the board for both professional engineers and engineers-in-
training. [§4.(bX4)l

The typical procedure for students completing an undergraduate engineering degree
is to take the state engineer-in-training examination during their senior year. Most
students find that this material is freshest in their minds during their senior year
rather than after a few years of professional experience. The law defines an
engineer-in-training as follows:

"Engineer-in-Training" means a candidate for licensure as a professional
engineer, who has been granted a certificate as an engineer-in-training after
successfully passing the prescribed written examination in fundamental
engineering subjects, and who shall be eligible upon completion of the requi-
site years of experience in engineering, under the supervision of a profession
engineer, or similarly qualified engineer, for the final examination prescribed
for licensure as a professional engineer. [§2.(c)]

The state board examines and certifies engineers-in-training, as prescribed in the
law as follows:

Examination and Certification of Engineers-in-Training.-To provide
for and to regulate the examination of any person who has produced satisfac-
tory evidence that he has graduated in an engineering curriculum from an
approved institution or college having a course of four years or more in engi-
neering or who has had four or more years' experience in engineering work,
and who produces satisfactory evidence to show knowledge, skill and educa-
tion approximating that attained through graduation from an approved insti-
tution or college, and to issue to any such person who successfully passes
such examination a certificate showing that he has successfully passed this
portion of the professional examination and is recognized as an engineer-in-
training. The examination of applicants as engineers-in-training shall be
designed to permit an applicant for licensure as a professional engineer to
take his examination in two stages. The examination for certification as an
engineer-in-training shall be for the purpose of testing the applicant's knowl-
edge of fundamental engineering subjects, including mathematics and the
physical sciences. Satisfactory passing of this portion of the examination
shall constitute a credit for the life of the applicant or until he is licensed
under this act as a professional engineer. [§4.(c)]

5.3.4. Code of Ethics

As is the case with most professions, the engineering profession has a code of ethics.
Persons seeking licensing as professional engineers in Pennsylvania are required to
affirm that they subscribe to and agree to abide by the code of ethics specified in
§4.(i)of the law:

CMU/SEI-90-TR-3 31

It shall be considered unprofessional and inconsistent with honorable and
dignified bearing for an professional engineer or professional land surveyor:

1. To act for his client or employer in professional matters otherwise than
as a faithful agent or trustee, or to accept any remuneration other than
his stated recompense for services rendered.

2. To attempt to injure falsely or maliciously, directly or indirectly, the
professional reputation, prospects or business of anyone.

3. To attempt to supplant another engineer or land surveyor after definite
steps have been taken toward his employment.

4. To compete with another engineer or land surveyor for employment by
the use of unethical practices.

5. To review work of another engineer or land surveyor for the same client,
except with the knowledge of such engineer or land surveyor, or unless
the connection of such engineer or land surveyor with the work has
terminated.

6. To attempt to obtain or render technical services or assistance without
fair and just compensation commensurate with the services rendered:
Provided, however, the donation of services to a civic, charitable, reli-
gious or eleemosynary organization shall not be deemed a violation.

7. To advertise in self-laudatory language, or in any other manner, deroga-
tory to the dignity of the profession.

8. To attempt to practice in any other field of engineering in which the
registrant is not proficient.

9. To use or permit the use of his professional seal on work over which he
was not in responsible charge.

10. To aid or abet any person in the practice of engineering or land survey-
ing not in accordance with the provisions of this act or prior laws.

Ethics has been a normal part of engineering curricula for many years, and we
believe it will be an important pervasive theme in software engineering curricula. It
is less common in computer science curricula, so issues of professional ethics in gen-
eral and software engineering ethics in particular are unfamiliar to most students
and educators in computer science. We hope that this situation will improve over
the next several years.

32 CMU/SEI-90-TR-3

6. Strategies for Undergraduate Software Engineering
Education

In the previous chapters we have presented a variety of topics that might be consid-
ered background or context for discussions of undergraduate software engineering
education. We now turn our attention to the development of appropriate educational
opportunities.

Even among those who accept the basic premise that better undergraduate educa-
tion for software professionals is needed, there is disagreement on the best ways to
provide that education. Approaches include complete programs in software engi-
neering, adding one or more courses to existing computer science curricula, and
adding software engineering topics to existing courses in computer science. A sam-
ple of the varied opinions can be found in the position papers of the participants in
the 1989 SEI Workshop on an Undergraduate Software Engineering Curriculum
(see Appendix 1 and [Gibbs89b]).

We believe that both separate programs in software engineering and software engi-
neering tracks in computer science programs are inevitable. In this chapter we
examine strategies for the development of such programs and tracks.

6.1. Program Development Strategies

Two competing strategies for the development of an undergraduate software engi-
neering program are immediately evident:

Creation: design an entire curriculum and install it as a new degree program
all at once.

Evolution: build the curriculum over a period of years within an existing
degree program.

Both strategies have advantages and disadvantages. To examine these, let us
assume that the evolution strategy will be applied to an existing computer science
program rather than an engineering program.

The individual courses in a software engineering program are expected to be very
different from those in the computer science program. Many of the same topics will
be taught, but with different objectives (engineering vs. science) and different com-
binations of topics making up the courses. The creation strategy allows the new
courses to be designed in one major effort, whereas the evolution strategy will
almost certainly require redesign of many courses each semester or year over a
period of several years. On the other hand, installing all new courses quickly is a

CMU/SEI-90-TR-3 33

burden for faculty and students, since textbooks and teaching materials will not be
readily available for all the courses.

Creation of a new program may require a substantial increase in resources, while an
evolutionary approach allows more time for acquiring or shifting resources. In some
cases, however, new resources may be available to make creation feasible. A num-
ber of major companies that employ large numbers of software engineers have
expressed interest in working with their local universities to develop software
engineering courses and programs. Federal government agencies such as the
National Science Foundation (NSF) are considering increased funding for support of
science and engineering education at the undergraduate level. A recent
Congressional study urges NSF specifically to increase support for software
engineering education, including the creation of pilot degree programs in several
universities [Congress89].

We believe that the most practical strategy for most schools will be evolutionary
development over a period of three to five years, and that the curriculum will exist
for some time as a track within an existing computer science program. This strategy
will tend to minimize the problem of availability of resources (and the program name
problem described in the next section).

Evolution of the program can be bottom-up or top-down. The bottom-up approach
introduces the new courses first at the freshman level, with other new courses being
introduced as the first students in the program proceed through their four years.
This approach requires a risky commitment on the part of the school, faculty, and
students, in that it is difficult to "bail out" if problems are encountered. Students
may find it difficult to switch to the existing computer science curriculum in later
years because they may not have the proper prerequisites, or because the computer
science courses may overlap the software engineering courses too much for the stu-
dents to receive credit for both, but not enough to permit the students to skip those
courses. An advantage of the bottom-up approach is that there is more time avail-
able to the faculty to develop the more advanced courses and to adjust the designs of
those courses based on experiences with the preceding courses.

The top-down approach introduces new courses first at the senior level, with other
new courses brought in later at increasingly lower levels. The beginning stages of
this approach are already visible at a number of schools that have introduced one-
semester and then two-semester courses in software engineering at the senior level.
[Tomayko87, Richardson88, Northrop89]. This approach is somewhat less risky, but
it does require continuing development of the higher level courses as the new and
presumably better prerequisite courses are introduced.

Regardless of the approach, some of the problems can be lessened by innovative or
nontraditional educational techniques. For example, many new courses can be
expected to combine topics from existing courses in new ways. Team teaching allows

34 CMU/SEI-90-TR-3

faculty members most familiar with a topic to present it, thereby decreasing the
preparation time of all faculty.

6.2. On the Name "Software Engineering"

A surprisingly significant problem that schools will face when developing a software
engineering program is choosing a name for the program. This section discusses
that problem and possible solutions.

The computing disciplines have suffered a kind of identity crisis throughout their
short history. The identity problem is reflected today in the names of academic
departments and programs, as shown in Figure 6.1, which lists the names of
departments granting PhD degrees in computing [Gries89].

The introduction of the term "software engineering" has further complicated mat-
ters. The term apparently first became widely known as a result of a 1968 confer-
ence in Garmisch, Germany, sponsored by the NATO Science Committee [Naur69].
Since that time it has become widely used, but without any real consensus on its
meaning. Several definitions that have appeared in the literature are presented in
Chapter 3.

University graduate programs in software engineering have existed in the United
States for more than 10 years. Not surprisingly, these programs have many differ-
ent names, as shown in Figure 6.2.

It is in the context of undergraduate software engineering education, however, that
the name "software engineering" has been most controversial. No other issue has
produced more discussion with fewer meaningful results than that of calling an
undergraduate program "software engineering." The discussion seems to be cen-
tered on the question, "Is software engineering really engineering?"

The arguments in support of a negative answer to that question are usually in one of
two categories. The first includes legalistic arguments that appeal to "formal" defi-
nitions of engineering, such as those in a dictionary, in the charter of a professional
society, or in the guidelines for accrediting engineering programs or licensing engi-
neers. Such definitions usually evoke the notion of tangible products derived from
effective use of the materials and forces of nature. For example, the Accreditation
Board for Engineering and Technology provides this definition [ABET88]:

Engineering is that profession in which knowledge of the mathematical and
natural sciences gained by study, experience, and practice is applied with
judgment to develop ways to utilize, economically, the materials and forces of
nature for the benefit of mankind.

CMU/SEI-90-TR-3 35

Number of
Departments Department Name

89 Computer Science(s)

22 Electrical and Computer Engineering

11 Computer Science and Engineering

10 Computer and Information Science(s)

7 Electrical Engineering and Computer Science

3 Computer Engineering

2 Computing Science

2 Electrical Engineering

2 Information and Computer Science

Advanced Computer Studies

Applied Sciences

Computational Science

Computer Engineering and Science

Computer Science and Electrical Engineering

Computer Science and Operations Research

Electrical, Computer, and Biomedical Engineering

Mathematical and Computer Sciences

Mathematical Sciences

Figure 6.1. Names of PhD-granting academic departments

Software, it is argued, uses neither the materials nor the forces of nature. However,
some engineering disciplines, such as industrial engineering, are very much con-
cerned with the design of processes, which are much closer to software in their
intangibility.

The second category of argument is based on the idea that an engineering discipline
evolves from a craft, and the software craft has not yet evolved sufficiently far to be
called engineering. (Perhaps the definitive discussion of the history of engineering
and its application to software engineering is [Shaw89]; we highly recommend it to
software engineering educators and students.)

Because definitions of engineering are not mathematically precise, it is not possible
to construct a "proof" that software engineering is or is not engineering. Similarly,
the boundary between craft and engineering is not clearly drawn, so it is not possible
to observe the crossing of that boundary.

36 CMU/SEI-90-TR-3

Program Title University

Master of Software Engineering Carnegie Mellon University
Seattle University

Master of Science in Software
Engineering

Andrews University
Monmouth College
University of Pittsburgh
The Wichita State University

Master of Science in Software
Engineering Sciences

University of Houston-Clear Lake

Master of Computer Science in Software
Engineering

The Wichita State University

Master of Science in Software Systems
Engineering

Boston University
George Mason University

Master of Software Design and
Development

College of St. Thomas
Texas Christian University

Master of Science in Software
Development and Management

Rochester Institute of Technology

Figure 6.2. Software engineering degree program titles

Arguments in support of a positive answer to the question "Is software engineering
really engineering?" have appeared in the literature for many years. The first we
have found was published in 1969 (!), and the author specifically calls for the estab-
lishment of software engineering curricula [Kuo69]. Another early argument is
[Jeffery77], and a reasoned argument may also be found in the first chapter of
[Jensen79a]. More recently, this question has been addressed in the narrower area
of information systems engineering in [Lewis89] and [Nash89].

There are practical implications of this issue for developers of undergraduate soft-
ware engineering programs. The word "engineering" may be unacceptable in the
title of a course or program in a college or university that does not have an engineer-
ing school. In some states, the state licensing board for engineers may have the
power, directly or indirectly, to limit the use of the word to those disciplines where
licensing is available. Furthermore, some schools believe that all undergraduate
engineering programs should be accredited, and it is unlikely that either the
Accreditation Board for Engineering and Technology (ABET) or the Computing
Science Accreditation Board (CSAB) will accredit a program titled "software engi-
neering" any time soon. (Accreditation issues are addressed in more depth in
Chapter 4 of this report.)

CMU/SEI-90-TR-3 37

Furthermore, programs that evolve in computer science departments at schools
where the department is outside the engineering school will almost certainly
encounter objections to the use of the name software engineering. In such cases it
may be possible for the degree to be granted through the engineering school, even
though the faculty and administration of the degree program reside in a department
outside that school. (The author of this report was involved in the development of
computer science programs in the reverse situation: the computer science depart-
ment was in the college of engineering, but it offered a bachelor of science degree in
computer science through the college of liberal arts.)

We believe that the name of a potential undergraduate software engineering pro-
gram is almost insignificant, whereas the content of the program is critically impor-
tant. We expect that as such programs are developed, they will have a variety of
names. The majority are likely to be new tracks within existing computer science or
computer engineering programs, and thus will officially bear the same name as the
existing program.

For schools that want to avoid being bogged down by the "Is it engineering?" and "Is
it science?" questions, we suggest a neutral term: software systems. At some point
in the future, it may be acceptable and desirable to rename the program software
engineering. (Note that the University of Houston-Clear Lake avoids the problem in
the opposite way; it calls its graduate program software engineering sciences.)

6.3. Speculation on Future Trends

There has been much speculation on the future development of the software engi-
neering discipline and the implications for software engineering education. We
believe that many of these ideas should be considered in any discussion of the devel-
opment of undergraduate software engineering education.

Some members of the software engineering community believe that the discipline
will partition itself into levels of skill, with different levels requiring different educa-
tional backgrounds. They cite the medical profession as a possible model. That
profession includes physicians, nurses, physician's assistants, and paramedics, all of
whom have reasonably well-defined roles. David Lamb suggests that we should
consider a model such as electrical engineering, with a software engineer analogous
to an electrical engineer, a programmer to a technician, and a computer scientist to
a physicist [Lamb88]. Al Pietrasanta suggests a similar future, with a small number
of "super-professionals" and a large number of supporting technicians [Gibbs87,
p. 418].

Others see a development somewhat like that of computer science in the 1960s and
1970s. Many schools first offered a computer science degree at the master's level.
These degrees were in great demand because many people with degrees in other

38 CMU/SEI-90-TR-3

areas found themselves being changed into programmers. Additional education was
needed, and a second bachelor's degree was not an acceptable approach. As a result,
many master's programs contained little more than repackaged undergraduate com-
puter science. In some schools, undergraduate computer science majors were not
allowed into their school's graduate program because they already knew all the
material.

As we develop a better understanding of the content of software engineering educa-
tion, we are likely to see the current master's programs in a similar light. We may
therefore expect most of today's graduate material to be brought down to the under-
graduate level in the next several years. In [Tomayko89], Jim Tomayko discusses
this issue and concludes, "[T]he actual material taught in graduate software engi-
neering courses can be easily understood by undergraduates."

Furthermore, there seems to be increasing belief in the software engineering com-
munity that domain-specific knowledge must become a part of software engineering
education. It is possible that as the generic software engineering concepts are
moved to the undergraduate level, master's programs will begin to offer substantial
opportunities for domain specialization. For example, master's students may devote
at least half of their studies to areas such as real-time embedded systems, commer-
cial systems, decision support systems, or expert systems.

Another concern affects all engineering education: the accelerating growth of
knowledge in the sciences and engineering may place impossible demands on stu-
dents to learn an appropriate part of the knowledge in a four-year baccalaureate
program. The president of the Accreditation Board for Engineering and Technology,
in [ABET88], identified one of the challenges for the year to be "to study the feasibil-
ity of advanced- or dual-level accreditation to address the concern that four-year
bachelor's degrees are no longer sufficient for today's world of stiff international
competition." The dean of engineering at MIT, in [Wilson89], says, "One of the prob-
lems we face is that we cannot do the things we want to do in engineering education
in four years. ... What we should be saying to students is that your undergraduate
degree is not enough; after you have some experience, you should go back to school.
And we should be telling industry that it is in their best interest to allow young
engineers to go back to school for a master's degree and to support them while they
do so." National studies, such as [NSB86] and [NRC85], discuss this problem and
conclude that for some fields, including computer engineering, a master's degree
should be the minimum entrance requirement for the profession.

We believe that all these issues must be considered as undergraduate software engi-
neering evolves. The challenge to provide high-quality education for a skilled soft-
ware work force can be met only by providing appropriate education at a variety of
levels for a variety of practitioners.

CMU/SEI-90-TR-3 39

7. Designing an Undergraduate Curriculum

A school that wants to implement a new undergraduate program in software engi-
neering obviously must design a curriculum. Even when a school plans a long-term
evolutionary approach to introducing software engineering into the undergraduate
curriculum, a design of the end product of that evolution is desirable. In this chap-
ter we discuss a variety of ideas, concepts, and constraints that might affect such a
design.

7.1. Curriculum Objectives

There are many opinions on the purposes and objectives of undergraduate education,
ranging along a spectrum from broad, general education to focused vocational, pre-
professional, or professional skills. In this section we will examine the professional
objectives of a potential software engineering curriculum, but we do not wish to
imply a lack of support for a broadly based undergraduate program.

7.1.1. Some Ideas from the Literature

In the spring of 1985, the ACM, with the cooperation of the IEEE Computer Society
appointed a task force on the core of computer science. Subsequently, the two soci-
eties formed the Joint Task Force on Undergraduate Curricula in Computer Science
and Engineering to develop guidelines for a common curriculum for all computing
programs. Although the latter task force has not yet issued its report, the report of
the former [Denning89] contains some general objectives for computing programs
that we believe apply to software engineering programs as well.

The report defines discipline-oriented thinking as "the ability to invent new distinc-
tions in the field, leading to new modes of action and new tools that make those
distinctions available for others to use." It goes on to say, "We suggest that disci-
pline-oriented thinking is the primary goal of a curriculum for computing majors ..."
and "Discipline-oriented thinking must be based on solid mathematical foundations,
yet theory is not an integral part of most computing curricula." The report also
states, "The standard practices of the computing field include setting up and con-
ducting experiments, contributing to team projects, and interacting with other disci-
plines to support their interests in effective use of computing, but most curricula
neglect laboratory exercises, team projects, or interdisciplinary studies."

The report concludes its discussion of curriculum objectives with these statements:
"The question of what results should be achieved by computing curricula has not
been explored thoroughly in past discussions, and we will not attempt a thorough
analysis here. We do strongly recommend that this question be among the first

40 CMU/SEI-90-TR-3

considered in the design of new core curricula for computing." We believe it should
also be the first question considered in the design of software engineering curricula.

ABET gives these overall objectives for an engineering program (including, we
believe, a software engineering program):

Engineering is that profession in which knowledge of the mathematical and
natural sciences gained by study, experience, and practice is applied with
judgment to develop ways to utilize, economically, the materials and forces of
nature for the benefit of mankind. A significant measure of an engineering
education is the degree to which it has prepared the graduate to pursue a
productive engineering career that is characterized by continued professional
growth. ...

Included are the development of: (1) a capability to delineate and solve in a
practical way the problems of society that are susceptible to engineering
treatment, (2) a sensitivity to the socially-related technical problems which
confront the profession, (3) an understanding of the ethical characteristics of
the engineering profession and practice, (4) an understanding of the engi-
neer's responsibility to protect both occupational and public health and
safety, and (5) an ability to maintain professional competency through life-
long learning. [ABET88]

Gerald Wilson, dean of engineering at MIT, suggests that the time is right for the
teaching of engineering to be revitalized:

An understanding of more than one engineering specialty and other under-
graduate experiences that prepare students to work in interdisciplinary
teams; more design work; and broad exposure to the economic, political, and
social issues involved in large engineering projects-these are some of the
elements of a refocused engineering education. [Wilson89]

Samuel Florman also argues for increasing the breadth of engineering curricula and
discusses some of the history of engineering education that has led to the current
state of technology-intensive curricula [Florman86].

Perhaps the best general description of curriculum objectives are implicit in the
definition of software engineering in [BCS89] (see Chapter 2 of this report). Explicit
objectives for a master's program in software engineering appear in [Ardis89]; these
objectives are potentially relevant because of the expectation that much of the mate-
rial in a graduate curriculum will migrate to undergraduate curricula.

A somewhat different perspective may be found in [Friedman89b], which reports the
results of a survey of 100 computer center managers of Fortune 500 companies.
These managers were asked about the most important requirements for new gradu-
ates entering the computer industry. The most often mentioned requirements, in
decreasing order of frequency of mention, included "practical experience; courses
strong in analytical, statistical, mathematical, logical skills; a degree in computer
science helps, but is not that important; strength in oral and written communication
skills; good business background; familiarity with a few different programming

CMU/SEI-90 -TR-3 41

languages." Knowledge of data structures was mentioned by only 8% of the
respondents.

7.1.2. Describing Educational Objectives

Educational objectives are to curriculum design what software requirements are to
software design. We hope that software engineering curriculum designers appreci-
ate this analogy and will devote sufficient energy to defining good objectives before
embarking on a major design effort.

A taxonomy of educational objectives that we have found particularly useful in our
work in designing a graduate curriculum appears in [Bloom56]. An adaptation of
this taxonomy for software engineering education appears in Appendix 2 of this
report and is elaborated in [Ford87] and [Ardis89]. Briefly, the taxonomy is a hier-
archy of increasingly difficult levels of achievement: knowledge, comprehension,
application, analysis, synthesis, and evaluation.

To help illustrate another dimension of the problem of clearly stating objectives,
consider the teaching of differential equations. Many, if not most, universities offer
different courses in differential equations for students in different programs. In one
case familiar to us, the course for pure mathematics majors spent virtually the
entire semester proving the uniqueness and existence theorems for differential
equations. In the course for applied mathematics and engineering majors, on almost
the first day of class the proofs of those theorems were accepted as given, and the
rest of the semester was devoted to techniques for solving differential equations and
applying them to the solution of common kinds of problems. In both cases students
achieved comprehension, application, analysis, and synthesis objectives, but they
worked toward different overall goals: mathematics vs. engineering.

Because of these differences, it is not sufficient for an educational objective to state
simply "differential equations at the analysis level" nor is it sufficient for a curricu-
lum design to say "a one semester course in differential equations." More specific
objectives will be needed. Clearly, this requires substantial effort on the part of the
curriculum designer. However, just as for software design, starting with a complete,
consistent, and clear requirements specification saves even more effort later and
improves the probability that the resulting design really meets the user's needs.

7.1.3. Goals and Objectives

At the highest level, the goals of an undergraduate software engineering curriculum
include:

• Preparing students for lifelong learning.

42 CMU/SEI-90-TR-3

• Making students capable of contributing to an increasingly technological
society; such as understanding enough about science and technology to
make appropriate political derisions.

• Developing the students' communication and critical reasoning skills.

• Giving students an appropriate set of professional or preprofessional skills.

In this section we consider in detail the last of these four goals. In particular, we
attempt to identify professional education objectives of a curriculum designed for
students who do not pursue an advanced degree.

One set of objectives for software engineering professional education is implicit in
the definition of software engineering in [BCS89]. This definition is reproduced in
Chapter 2 of this report.

A second set of objectives can be derived from the objectives for a Master of Software
Engineering curriculum in [Ardis89]. These new objectives are presented below in
categories based on Bloom's taxonomy2 [Bloom56]:

Knowledge: In addition to knowledge about all the material described in the sub-
sequent paragraphs, students should be aware of the existence of models, represen-
tations, methods, and tools other than those they learn to use in their own studies.
Students should be aware that there is always more to learn and that they will
encounter more in their professional careers, whatever they may have learned in
school.

Comprehension: Students should understand the differences between science and
engineering along with the fundamental paradigms of each. They should under-
stand the software engineering process, both in the sense of abstract models and in
the various instances of the process as practiced in industry. They should under-
stand the activities and aspects of the process. They should understand the issues
(sometimes called the software crisis) that are motivating the growth and evolution
of the software engineering discipline. They should understand the differences
between academic or personal programming and software engineering; in particular,
they should understand that software engineering involves the production of soft-
ware systems under the constraints of control and management activities. They
should understand a reasonable set of principles, models, representations, methods,
and tools, and the role of analysis and evaluation in software engineering. They
should understand the architectures of many common and well-understood classes of
software systems. They should know of the existence and comprehend the content of
appropriate standards. They should understand the fundamental economic, legal,
and ethical issues of software engineering.

2See Appendix 2 for a brief description of this taxonomy; see [Ardis89] for definitions of the terms
activity, aspect, and product as they are used here.

CMU/SEI-90-TR-3 43

Application: Students should be able to apply fundamental principles in the per-
formance of the various activities. They should be able to apply appropriate formal
methods to achieve results. They should be able to use appropriate tools covering all
activities of the software process. They should be able to collect appropriate data for
project management purposes, and for analysis and evaluation of both the process
and the product. They should be able to execute a plan, such as a test plan, a qual-
ity assurance plan, or a configuration management plan; this includes the perfor-
mance of various kinds of software tests. They should be able to apply documenta-
tion standards in the production of all kinds of documents.

Analysis: Students should be able to participate in technical reviews and inspec-
tions of various software work products, including documents, plans, designs, and
code. They should be able to analyze the needs of customers.

Synthesis: Students should be able to perform the activities leading to various
software work products, including requirements specifications, designs, code, and
documentation. They should be able to develop plans, such as project plans, quality
assurance plans, test plans, and configuration management plans. They should be
able to design data for and structures of software tests. They should be able to
prepare oral presentations, and to plan and lead software technical reviews and
inspections.

Evaluation: Students should be able to evaluate software work products for con-
formance to standards. They should know appropriate qualitative and quantitative
measures of software products, and be able to use those measures in evaluation of
products, as in the evaluation of requirements specifications for consistency and
completeness, or the measurement of performance. They should be able to perform
verification and validation of software. These activities should consider all system
requirements, not just functional and performance requirements. Students should
be able to apply and validate predictive models, such as those for software reliability
or project cost estimation. They should be able to evaluate new technologies and
tools to determine which are applicable to their own work.

The word appropriate occurs several times in the objectives above. The software
engineering discipline is new and changing, and there is not a consensus on the best
set of representations, methods, or tools to use. Each curriculum must be structured
to match the goals and resources of the school and its students.

7.2. Prerequisites

The fundamental prerequisite for an undergraduate software engineering program
is completion of an appropriate secondary school curriculum. This should include
four years each of mathematics and English and three years of science. College and
university entrance requirements generally address this prerequisite adequately.

44 CMU/SEI-90-TR-3

We believe that another prerequisite ought to be considered: programming ability.
This suggestion is based on an observation about programs in the sciences and
engineering. It is perhaps most easily described through analogies.

Consider the introductory sequence in physics. Entering students have developed
through life experiences an intuitive understanding of virtually all of the physical
phenomena to be studied: motion, velocity, acceleration, gravity, mass, force, heat,
light, waves, electricity, magnetism, etc. This permits the first courses to say to the
students, "You already know what all these things are; now we will reexamine them
scientifically and with mathematical precision." Similar analogies can be drawn for
the common engineering fields, such as civil, mechanical, and electrical engineering.

We believe that software engineering is and will continue to be evolving in the
direction of increased use of formal or structured methods. To teach the growing
body of formal methods for programming, the student needs a knowledge of the
programming concepts that are being made precise. This knowledge is unlikely to
be acquired through life experience. However, it can be acquired through a high
school advanced placement course in computer science or through a typical first
programming course at the college level.

This prerequisite suggestion is certain to be controversial. It is contrary to the
beliefs of some of computer science educators who maintain that precise formal
development of programs (and algorithms) should be taught from day one. A few
schools have experimented with this approach, with varying degrees of success (see,
for example, [Mills89]). These experiments, however, were in computer science
curricula. A software engineering curriculum has different objectives, so it is not
necessarily the case that any successes (or failures) in a computer science curricu-
lum will carry over.

We note in passing that the report of the ACM task force on the core of computing, a
controversial report itself, also suggests programming ability as prerequisite for the
introductory course in computing [Denning89]. Furthermore, ABET accreditation
guidelines for engineering programs specifically exclude "computer programming
skills'' from the list of acceptable engineering sciences.

7.3. Technical Content of a Curriculum

There are several possible approaches to selecting the curriculum content. A
"curriculum engineering" approach would be to derive the content directly from the
objectives. However, the purpose of this report is to promote discussion rather than
provide definitive answers, so we believe it is more effective to use another
approach. In this section we first examine some curriculum content recommenda-
tions that have appeared in the literature. Second, because we believe that the

CMU/SEI-90-TR-3 45

accreditation criteria of ABET and CSAB represent a significant amount of thought
on these issues, we examine the implications of those criteria on curriculum content.

7.3.1. BCS/IEE Curriculum Recommendations

The most significant work to date on identifying the content of an undergraduate
software engineering program has been done by a joint working party commissioned
by the British Computer Society (BCS) and the Institution of Electrical Engineers
(IEE). The working party began its work in February 1988; it produced a prelimi-
nary report in March 1989 and a final report in June 1989 [BCS89]. This report is
essential reading for anyone interested in software engineering curriculum design.

The report discusses a variety of curriculum issues. A section on context addresses
the purpose of the curriculum, the need for flexibility and variation in the curricu-
lum from one school to another, the balance of breadth and depth, prerequisites, and
resource requirements. It also discusses what it terms an engineering ethos, which
includes four themes or components: theory, technology, practice, and application.
The report argues that there are "educational advantages in a holistic treatment of
Software Engineering which deliberately keeps the four components of engineering
interacting throughout a course."

A section titled "Pervading Themes" presents design and quality as themes that
must be conveyed throughout a curriculum. An argument is made that design is
more critical for software engineering than for the traditional engineering disci-
plines. A detailed discussion then describes many aspects of design that should be
taught. Quality, the second pervading theme, is described in terms of cost,
timeliness, reliability, and functionality. The discussion presents a large number of
techniques that help achieve quality and suggests how they might be incorporated
into courses.

The curriculum content section of the report is organized around three kinds of
skills: central software engineering skills, supporting fundamental skills, and
advanced skills. These are summarized below.

Central software engineering skills:

• System design and the design of changes to systems

• Requirements analysis, specification, design, construction, verification,
testing, maintenance and modification of programs, program components,
and software systems

• Algorithm design, complexity analysis, safety analysis, and software
verification

• Database design, database administration and maintenance

• Design and construction of human-computer interaction

46 CMU/SEI-90-TR-3

• Management of projects that accomplish the above tasks, including estimat-
ing and controlling their cost and duration, organizing teams, and monitor-
ing quality

• Selection and use of software tools and components

• Appreciation of commercial, financial, legal, and ethical issues arising in
software engineering projects.

Supporting fundamental skills:

• Information handling skills: listening, questioning, searching literature,
reading documents; oral and written reporting; presentation, and working
in teams

• Mathematical skills: methods, notations, and results (mostly from discrete
mathematics)

• Knowledge of computer architecture and hardware

• Knowledge of digital communication systems

• Numerical methods

• Knowledge of some major existing components and systems, such as operat-
ing systems, communications protocols, programming languages, program-
ming environments, numerical libraries, graphics standards

• Contextual awareness: the changes in hardware and software technologies
that are developing, and the forces that drive those changes

Advanced skills (including increased depth in the preceding areas):

• Communications and networks

• Compiler construction and optimization

• Computability

• Computational solid geometry

• Concurrent programming

• Data modeling

• Declarative programming methods and related computer architectures

• Distributed systems

• Formal logics and inference

• Hardware/software interfaces

• High performance parallel computing

• High quality graphical rendition and animation

• Human-computer interaction

• Object-oriented paradigm and related computer architecture

• Mathematical software

CMU/SEI-90-TR-3 47

• Memory-based reasoning

• Real-time systems

• Requirements analysis and specification

• Safety-critical systems

• Semantics

• Statistical inference and pattern recognition

• Verification

The report also includes an extended discussion of pedagogical issues, including sug-
gestions for alternative ways of approaching the same material. For example, it
describes three approaches to teaching programming methodology: starting with
abstraction, starting with practice, and starting with rigor.

7.3.2. ACM and IEEE-CS Curriculum Recommendations

The ACM and the IEEE Computer Society have created the Joint Task Force on
Undergraduate Curricula in Computer Science and Engineering, which has been
addressing undergraduate computing curriculum issues for two years. Their
primary goal is to identify the material that is common to all computing programs,
including computer science, computer engineering, and possibly information systems
and software engineering. We had hoped to be able to include in this report a
discussion of the task force's recommended common material and its relationship to
potential software engineering curricula. However, the group has not yet issued a
public report.

Preliminary versions of the task force's recommendations have been presented at
public meetings and have been circulated to reviewers (including the author of this
report). The recommendations are structured as knowledge units in ten broad areas:

• Algorithms and data structures

• Programming languages

• Computer architecture

• Numerical and symbolic computation

• Operating systems

• Software methodology and engineering

• Database and information retrieval

• Artificial intelligence and robotics

• Human-computer communication

• Social, ethical, and professional issues

48 CMU/SEI-90-TR-3

Each knowledge unit addresses a relatively small and coherent body of knowledge.
Their descriptions include not only suggested lecture topics, but also Suggested labo-
ratory exercises, relationships (such as prerequisite) to other units, and an estimate
of the total lecture hours needed to cover the material. The total lecture hours for
all knowledge units is about 300; this represents 7.5 semester courses (assuming 40
lecture hours per semester).

We believe it is likely that the final recommendations of this task force will be com -
patible with the ideas for an undergraduate software engineering curriculum pre-
sented in the next chapter. The task force's final report, expected late in 1990, will
certainly be required reading for undergraduate computing curriculum designers.
We plan to examine that report and discuss its implications for software engineering
curricula in our next undergraduate curriculum report.

7.3.3. Other Recommendations from the Literature

David Parnas makes an argument for educating "computing professionals" as engi-
neers [Parnas90]; this paper (along with the reports of the professional societies
described above) is required reading for anyone interested in software engineering
curriculum design. He describes some of the history of computer science curricula,
and then sketches a curriculum drawn largely from courses likely to exist already at
universities with engineering schools. He chooses 13 courses in mathematics, 3 in
science, 8 in engineering, and 8 in computing science. A prerequisite is that the
student is a "capable programmer."

We find ourselves in sympathy with Parnas's fundamental premises, but we have
three reasons why we cannot support his implementation. First, his required tech-
nical courses would constitute at least 80% of an undergraduate program. That
leaves insufficient time for coursework to meet curriculum objectives other than
career preparation. Second, we do not believe that a curriculum should be simply a
collection of independent, existing courses. A curriculum should be designed with
specific goals and with coherent course sequences that address those goals. Third,
all of the recommended engineering and computing science courses seem to be engi-
neering science rather than engineering design, leaving a large gap in the student's
education. In particular, there is a body of knowledge about the engineering
processes by which large software systems can be brought into existence that is not
reflected in the suggested courses.

7.3.4. Implications of ABET Criteria

If we assume that ABET accreditation will be a goal for some or many undergradu-
ate software engineering programs, then it is useful to examine the implications of

CMU/SEI-90-TR-3 49

ABET accreditation criteria for curriculum design. The criteria are summarized in
Chapter 4 of this report. Some of the implications are described below.

The mathematics requirement includes differential equations, and courses in
advanced calculus and linear algebra are recommended. Discrete mathematics is
not mentioned in either the required or recommended courses. It is apparent that
these mathematics requirements are derived from the traditional engineering disci-
plines' view of engineering as applying the materials and forces of nature, which are
best modeled with continuous mathematics. A software engineering curriculum that
satisfies ABETs current criteria would need a large mathematics component to
include both the required continuous mathematics and the needed discrete
mathematics.

Computer programming skills are specifically excluded from the mathematics, basic
science, and engineering science categories in the ABET criteria. A software engi-
neering curriculum will necessarily include material that can be called informally
"computer programming." Packaging this material with appropriate computer
science and software engineering fundamentals and principles may be critical to its
acceptance under current criteria.

The engineering sciences that are the foundations for the traditional engineering
disciplines include mechanics, thermodynamics, electrical and electronic circuits,
materials science, and transport phenomena. None of these is directly applicable to
software engineering. Computer science is also considered an engineering science,
so most of the engineering science component of a software engineering curriculum
would be computer science. ABET requires, however, that at least one engineering
science course be outside the major discipline. Of the remaining choices, a course in
electronic circuits may be most valuable.

Other ABET criteria address courses in the humanities and social sciences, and cur-
riculum content in oral and written communication, computer-based experiences,
laboratory experiences, and ethical, social, economic, and safety considerations in
engineering. It should not be difficult to incorporate all of this kind of material into
a software engineering curriculum.

We must keep in mind, however, that the ABET accreditation criteria are not etched
in stone; they change to reflect changes in engineering practice and engineering edu-
cation. Not too many years ago, computer science was not listed among the engi-
neering sciences and computer engineering was not listed as an engineering
specialty with separate accreditation guidelines. In designing a software engineer-
ing curriculum, it will be better in the long run to choose courses that reflect the
spirit of the ABET criteria rather than blindly following all the existing require-
ments. Well-designed curricula and programs producing highly competent software
engineers will influence future ABET criteria.

50 CMU/SEI-90-TR-3

7.3.5. Implications of CSAB Criteria

Although a software engineering curriculum will probably be closer in spirit and
structure to an ABET-accredited engineering curriculum, the CSAB accreditation
criteria represent a significant effort and should be considered in curriculum design.
The CSAB criteria are somewhat more flexible than those of ABET and include two-
thirds year of unspecified coursework. It is likely that a software engineering cur-
riculum designed in the spirit of the ABET criteria may satisfy the CSAB criteria as
well.

The mathematics requirement is one-half year including calculus, discrete mathe-
matics, and probability and statistics. All are relevant to a software engineering
curriculum. Likewise, the science requirement is reasonable for a software engi-
neering curriculum: a two-semester laboratory science sequence plus two other
courses in science or courses with strong emphasis on quantitative methods. The
requirement of one and one-third years of computer science courses is also reason-
able if we assume that courses in software engineering count toward this
requirement.

7.4. Liberal Education Content of a Curriculum

There are a number of opinions on the importance and content of the "liberal" or
"non-technical" component of an engineering curriculum. The ABET accreditation
criteria state:

Studies in the humanities and social sciences serve not only to meet the
objectives of a broad education, but also to meet the objectives of the engi-
neering profession. Therefore, studies in the humanities and social sciences
must be planned to reflect a rationale or fulfill an objective appropriate to the
engineering profession and the institution's educational objectives. In the
interests of making engineers fully aware of their social responsibilities and
better able to consider related factors in the decision-making process, insti-
tutions must require coursework in the humanities and social sciences as an
integral part of the engineering program. This philosophy cannot be over-
emphasized. To satisfy this requirement, the courses selected must provide
both breadth and depth and not be limited to a selection of unrelated
introductory courses.

ABET gives examples of acceptable subject areas including philosophy, religion,
history, literature, fine arts, sociology, psychology, political science, anthropology,
economics, and foreign languages.

Samuel Florman [Florman86] argues for increased liberal education of engineers:
"The fact is that engineers are not receiving essential elements of a traditional
college education-and this is occurring at a time when more and more of their fellow
citizens are doing so, and when engineers need to be better informed about the world

CMU/SEI-90-TR-3 51

around them to function effectively." He cites a 1984 report by the National
Institute of Education that calls for all recipi3nts of bachelor's degrees to have at
least two full years of liberal education and that urges professions such as engineer-
ing to extend their programs accordingly. He notes that at its 1985 education
conference, the American Society of Civil Engineers formally recommended a five-
year program, including more liberal arts courses, for entry into the profession.

The content of the liberal arts component of a software engineering curriculum can
vary considerably from school to school and from student to student. The important
consideration is that the students have a sufficiently broad understanding of society
to permit them to practice their profession effectively.

7.5. Pedagogical Considerations

A good curriculum design must consider more than just objectives, prerequisites,
and content. Pedagogy and the kinds of educational experiences provided to the
students are also important.

[Denning89] makes a statement about pedagogy and the importance of lifelong
learning for computing professionals:

The curriculum should be designed to develop an appreciation for learning
which graduates will carry with them throughout their careers. Many
courses are designed with a paradigm that presents "answers" in a lecture
format, rather than focusing on the process of questioning that underlies all
learning. We recommend that [the task force on undergraduate curricula]
consider other teaching paradigms which involve processes of inquiry, an
orientation to using the computing literature, and the development of a
commitment to a lifelong process of learning.

Often our conceptual models of processes can be fundamentally altered by the words
we use to describe them. At the 1986 SEI Software Engineering Education
Workshop, Fred Brooks described how his view of software development changed the
first time a colleague use the phrase "build a program" instead of the more familiar
"write a program." (Brooks himself now recommends we consider the phrase "grow a
program.") In the case of the learning process, the eminent Swiss psychologist Jean
Piaget suggests that learning is "constructing new knowledge" rather than
"receiving new knowledge."

Psychologists distinguish declarative knowledge and procedural knowledge. The
former is easy to write down and easy to teach; the latter is nearly impossible to
write down and difficult to teach. It is largely subconscious, and it is best taught by
demonstration and best learned through practice. Many of the processes of software
engineering depend on procedural knowledge. Thus, it is essential that we design
our courses and laboratories to allow our students to experience the engineering

52 CMU/SEI-90-TR-3

process, to construct their own procedural knowledge. There is certainly an element
of truth in the humorous statement quoted in [Weinberg84]: "[The lecture method
is] a way of getting material from the teacher's notes into the student's notes-
without passing through the brain of either one."

Research on the intellectual development of college-age students also has implica-
tions for engineering curricula [Perry70, Culver82]. Perry identified several stages
of development in students over their four years in college. In the early stages, the
students were more inclined to see all issues as black or white and to expect absolute
answers from a suitable authority. In the later stages, they accepted the concept of
judgment being applied to select among a range of alternatives. (He notes that
students unable to make the transition to the later stages often took refuge by
majoring in the physical sciences!) This work suggests that an engineering curricu-
lum should concentrate the fundamental mathematics and engineering science in
the early years and wait for the junior or senior years to attempt to teach the appli-
cation of judgment to engineering design problems.

Finally, although it is beyond the scope of this report to treat in detail, we note that
there are a number of efforts underway to reexamine and restructure professional
education. These are based on our increased understanding of how students learn.
Schein summarizes one of these new approaches as follows:

The new professional school would start with a learning theory that inte-
grates basic sciences, applied sciences, and professional skills within single
learning modules rather than separating them into successive 'core courses,'
'applied courses,' and 'practicum.' The new professional school would be
organized around learning modules of varying lengths and would permit the
putting together of different patterns of modules, dealing with different pro-
fessional career foci, leading to different kinds of professional degrees which
would require different lengths of time to complete. [Schein72]

An example is the Stanford Law School, which offers four different degrees: Doctor
of Jurisprudence, Doctor of Juristic Science, Master of Science in Law, and Master of
Jurisprudence. Harvard Medical School, while not offering a variety of medical
degrees, has recently begun a major experiment that uses a small team, case study
approach rather than traditional lectures and laboratories; this approach integrates
many basic sciences, applied sciences, and practical experiences.

Although these approaches are being tried at the graduate professional level, the
ideas behind them should be considered as we begin to design the range of under-
graduate and graduate professional education for software engineers.

CMU/SEI-90-TR-3 53

8. An Exercise in Curriculum Design

A major goal of this report is to stimulate discussion in the software engineering
community of undergraduate education. To help achieve this goal, we believe it is
helpful to sketch the design of an undergraduate curriculum in software engineer-
ing. This belief is based on our experiences with the design of a master's level
curriculum. Nothing generated more discussion than a strawman curriculum that
could be circulated, criticized, dissected, and redesigned.

In undertaking this design exercise, we remember the words of John Hopcroft in his
1986 ACM Turing Award lecture, in which he described his arrival at Princeton in
1964 [Hopcroft87]:

Princeton asked me to develop a course in automata theory to expand the
scope of the curriculum beyond the digital circuit design course then being
offered. Since there were no courses or books on the subject, I asked
[Edward] McCluskey to recommend some materials for a course on automata
theory. He was not sure himself, but he gave me a list of six papers and told
me that the material would probably give students a good background in
automata theory. ...

At the time, I thought it strange that individuals were prepared to introduce
courses into the curriculum without clearly understanding their content. In
retrospect, I realize that people who believe in the future of a subject and who
sense its importance will invest in the subject long before they can delineate
its boundaries.

8.1. Design Constraints

In performing our design exercise, we accept the following constraints on the
curriculum:

1. It exhibits the general structure of an engineering curriculum.

2. It is reasonably close to the accreditation guidelines of both ABET and
CSAB, to the extent that those two sets of guidelines are compatible.

3. It incorporates the most up-to-date software engineering knowledge that is
appropriate at the undergraduate level.

4. It incorporates the material defined by the ACM/IEEE-CS joint curriculum
task force to be common to all undergraduate computing curricula. (Because
the task force has not yet published its report, our design has been influ-
enced by a partial report distributed confidentially to reviewers, including
the author of this report. We have agreed not to publish at this time a
detailed discussion of how the task force's material maps into our design.)

54 CMU/SEI-90-TR-3

5. It reflects appropriate pedagogical considerations, such as those described in
the previous chapter.

6. There exists a feasible and reasonable top-down evolutionary strategy for
introducing it.

8.2. Curriculum Structure

If we accept the premise that software engineering is or will soon become a true
engineering discipline, it is reasonable to expect that an undergraduate curriculum
would have the same basic structure as successful curricula in other branches of
engineering. Some of that structure is inherent in the ABET accreditation criteria.

It also seems reasonable to consider the CSAB accreditation criteria, which,
although not intended to apply to engineering curricula, still represent a significant
body of opinion about undergraduate curricula in the computing disciplines. Hence
we begin with the first two constraints listed above.

On the other hand, we believe that it is a mistake to try to force a software engineer-
ing curriculum to fit accreditation criteria that were not developed with software
engineering in mind. It will almost certainly be many years before accreditation of
these programs will be possible. As programs evolve, the most important considera-
tion is that they are structured in whatever way best achieves their educational
objectives. Nevertheless, it is useful to compare the two sets of criteria to see what
common structure, if any, they suggest for a software engineering curriculum.
Figures 8.1 and 8.2 summarize the guidelines of ABET and CSAB, respectively.

Requirement ABET Content Category

25% Mathematics and Basic Sciences

25% Engineering Sciences

12.5% Engineering Design

12.5% Humanities, Social Sciences

25% Electives

Figure 8.1. ABET guidelines

CMU/SEI-90-TR-3 55

Requirement CSAB Content Category

22.5%

33.3%

27.5%

16.7%

Mathematics and Sciences

Core and Advanced Computer Science

Humanities, Social Sciences, Arts, Other

Electives

Figure 8.2. CSAB guidelines

In light of CSAB's apparent goal of permitting accreditable liberal arts programs, it
is not surprising that it is not possible to define a curriculum that simultaneously
satisfies both sets of criteria. However, we can come close if we consider the ABET
categories of engineering science and engineering design together to be the counter-
part of the CSAB categories of core and advanced computer science together, and if
we require half of ABETs electives to be in the humanities and social science areas.
Figure 8.3 shows this common curriculum structure, including a breakdown by
semester hours based on a 120 semester hour degree requirement.

Requirement
Semester

Hours Content Category

22.5% 27 Mathematics and Basic Sciences

37.5% 45 Software Engineering Sciences and
Software Engineering Design

25% 30 Humanities, Social Sciences

15% 18 Electives

Figure 8.3. Curriculum structure for software engineering

This curriculum deviates from the ABET requirements by shifting one course from
the mathematics and science category to electives. On the other hand, it includes
somewhat more technical material in the major field (perhaps two courses) than the
CSAB requirements, resulting in a corresponding reduction in the number of free
electives. Also, it does not explicitly include the arts along with the humanities.
This would probably prevent such a curriculum from fitting into a liberal arts
college. We do not believe this is necessarily a flaw in the curriculum, but rather a
reflection of the belief that an undergraduate software engineering program is closer
in character to other engineering programs than to liberal arts programs in the
sciences.

56 CMU/SEI-90-TR-3

To assess the validity of the software engineering curriculum structure in Figure
8.3, we must examine the potential curriculum content in each of the categories, and
we must address the question of whether such a curriculum can provide an inte-
grated educational experience that achieves a reasonable set of educational objec-
tives. Toward this end, we try below to identify some of the appropriate mathemat-
ics, science, and software engineering content of the courses in the various
categories.

8.3. Curriculum Content Sketch

As we have noted earlier, the design of a curriculum is a complicated task, and the
result is more than a list of courses or a description of their content. The material
presented in this section is clearly insufficient to be considered a complete curricu-
lum design. Its purpose is to sketch the content and organization of a strawman
curriculum and to provide some of the motivation and rationale for the content. We
invite comments and hope to incorporate many of the suggestions we receive in sub-
sequent SEI curriculum reports.

8.3.1. Mathematics and Science

The mathematics and science content of the curriculum should help achieve two
fundamental objectives. First, it should prepare students to participate competently
in an increasingly technological society. This includes the ability to understand
science and technology issues well enough to make informed political decisions.
Second, the science and mathematics content should provide the students with an
appropriate foundation for subsequent software engineering courses.

Mathematics has been particularly useful to engineers in that it allows abstract
models of the physical world to be built and analyzed. The results of that analysis
can be transferred back to the physical world, especially to the artifacts that the
engineer is building. Nearly all the techniques applied by engineers in the tradi-
tional disciplines are based on continuous mathematics. At the heart of that branch
of mathematics are differential and integral calculus and differential equations.

The models built by software engineers, however, are much more likely to rely on
discrete mathematics. It is often used to model the behavior of digital computer and
digital systems (above the level of the electronic devices), the behavior of software,
and the behavior of systems that include software. Especially useful is the wide
range of formalisms lumped together under the title logic. Therefore, to achieve the
same overall goals that led to inclusion of continuous mathematics in traditional
engineering curricula, a significant amount of discrete mathematics is essential in a
software engineering curriculum.

CMU/SEI-90-TR-3 57

Probability and statistics are likely to become increasingly important to software
engineers, not only for purposes of modeling systems controlled by or simulated by
software, but also for modeling software engineering processes. An example is soft-
ware reliability modeling.

Calculus still has important roles in software engineering curricula. It is useful in
approximation techniques in the analysis of algorithms; it is used in software per-
formance analysis; it is prerequisite to some of the topics in probability and statis-
tics; it is the basis for many concepts in numerical analysis and scientific computing;
and it is necessary for the study of physics.

Differential equations, on the other hand, has almost no application to software
engineering per se. An undergraduate curriculum in software engineering therefore
does not require a course (theoretical or applied) in differential equations. Of course,
the application software in many areas of science and engineering might involve
numerical solution of or other use of differential equations, and students committed
to careers in such application domains might choose mathematics, science, and other
elective courses accordingly.

A topic that spans the boundaries of discrete mathematics, continuous mathematics,
and computer science is numerical methods. An understanding of the limitations of
digital computers when performing calculations on (ostensibly) real numbers is a
fundamental part of the education of a software engineer.

While the physical and life sciences are fundamental to traditional engineering dis-
ciplines, they provide virtually no basis for software engineering. The only signifi-
cant exception is that electricity and magnetism, common topics in introductory
physics courses, support the study of the computer itself, and software engineers
need a basic understanding of the machine for which they are developing software.
To achieve the first goal stated above, however, it is probably the case that basic
knowledge of physics, chemistry, and biology are essential in almost any undergrad-
uate curriculum. Chemistry and biology, in particular, are likely to be increasingly
important in understanding society's health care, environmental, and genetic engi-
neering issues in the next century.

An understanding of science necessarily includes an understanding of the methods
of science, including laboratory methods. Therefore, we assume that there is a
reasonable laboratory component to at least some of the science courses.
Appropriate introductory physics and chemistry courses are quite likely to satisfy
this requirement.

This discussion leads us to recommend the mathematics and science requirements
shown in Figure 8.4

58 CMU/SEI-90-TR-3

Subject Courses

Discrete mathematics 2
Probability and statistics 1
Calculus 2
Numerical methods 1
Physics 1
Chemistry 1
Biology 1

Figure 8.4. Mathematics and science requirements

8.3.2. Engineering Science and Engineering Design

An engineering curriculum includes a substantial amount of engineering science and
engineering design. In the traditional engineering disciplines, the engineering
science component includes courses is areas such as mechanics, thermodynamics,
electrical and electronic circuits, materials science, and transport phenomena.
Engineering design courses cover a process that includes establishment of objectives
and criteria, synthesis, analysis, construction, testing, and evaluation.

The corresponding topics for a software engineering curriculum will be different. In
particular, software engineering per se does not involve processes or products for
which such sciences as mechanics, thermodynamics, materials, or transport phe-
nomena are relevant. (We recognize, of course, that software may be involved in the
development or control of engineered systems for which these sciences are impor-
tant. Thus these sciences may be important to software engineers who are commit-
ted to working in a particular application domain.) To determine appropriate soft-
ware engineering topics, we must examine the purposes served by engineering
science and engineering design in the traditional engineering disciplines.

The engineering sciences are described by ABET as providing a bridge between
mathematics or basic science and engineering practice. Knowledge of these sciences
permits an engineer to reason about the artifacts he or she intends to build before
they are built. It allows the engineer to design a highway bridge that doesn't col-
lapse the first time a truck passes over it and an aircraft that doesn't crash on its
first flight. Software engineers need a kind of engineering science that would permit
similar kinds of confidence and predictability in software systems. This kind of
science should provide analytical tools or capabilities for the software engineer.

The engineering design component of an engineering curriculum is described by
ABET as including, among other things, development and use of design methodol-
ogy, formulation of design problem statements and specifications, consideration of

CMU/SEI-90-TR-3 59

alternative solutions, feasibility considerations, and detailed system descriptions.
These concepts can be incorporated into a software engineering curriculum as
stated. The only difference from a traditional engineering discipline is the kind of
artifact to be constructed. It may also be noted that this direct applicability of the
concepts of traditional engineering design to software engineering is one of the
strongest arguments for considering software engineering to be a true engineering
discipline.

A curriculum need not have the engineering science and engineering design segre-
gated and placed in different courses. In fact, for software engineering it is not
always possible to determine whether a particular topic is in one category or
another. In the following four subsections, therefore, we sketch the content of a
software engineering curriculum in four categories with more descriptive titles:
software analysis, software architectures, computer systems, and software process.

The curriculum structure presented in Section 8.2 suggested 45 semester hours of
software engineering courses. The courses material described below totals 14
courses or 42 semester hours. Therefore one software engineering elective course
will also be allowed.

8.3.2.1. Software Analysis

The software analysis component of the curriculum provides the student with the
knowledge to describe, model, and reason about software and software processes.
This allows them to predict properties for software systems, such as reliability, per-
formance, fault-tolerance, and safety. Some of the topics in this area are:

Formal development of algorithms and programs, including basic concepts
of formal verification

Abstraction and modeling as techniques

Formal systems that can be applied in software engineering: automata,
formal languages, etc.

Measurement of software processes and products

Analysis of algorithms

Performance analysis and prediction

Computability

Fundamental concepts of control theory

Fundamental concepts of information theory

The major goal of this curriculum component is to instill in the student the idea that
he or she can reason about software rather than employ the ad hoc or trial-and-error
techniques that are prevalent in today's computer science curricula. To achieve this

60 CMU/SEI-90-TR-3

goal, the material must be taught early in the curriculum (beginning in the fresh-
man year) and reinforced throughout all courses.

We estimate that the material described above would require approximately three
one-semester courses. However, in keeping with the idea that professional educa-
tion might be improved by closer ties between theory and practice, we can foresee
curricula that combine this material with some of the discrete mathematics, proba-
bility, and statistics material to produce four or five courses. We can also foresee
curricula that combine some of this material with some of the software architectures
material described below.

8.3.2.2. Software Architectures

A characteristic of the more mature engineering disciplines is routinization, which is
the ability to solve recurring problems by routine application of known results rather
than rederiving those results from basic principles. For example, a civil engineer
faced with the problem of designing a highway bridge does not begin by applying dif-
ferential equations to determine the stress on beams. It is much more likely that
the engineer will estimate the average and peak traffic patterns for the bridge,
measure the span, determine the soil characteristics at both ends of the proposed
bridge, and then order something like a "standard A-304-X highway bridge" from the
state highway department's handbook of bridges. This is routine practice, but it is
nevertheless real engineering.

Although software engineering is not as mature as civil engineering, there are many
recurring problems for which there are widely accepted (and in some cases, provably
optimal) solutions or software architectures. An important part of the education of a
software engineer is to know how to recognize these recurring problems and how to
select among the known architectures for solving them.

In the last century, this kind of knowledge was provided to engineers in the tradi-
tional disciplines through apprenticeships. In fact, it was not until 1916 that the
majority of engineers in the United States had attended college at all, let alone
graduated with an engineering degree. Software engineering over the last 40 years
has also depended greatly on informal apprenticeships rather than college degrees in
software engineering as the mechanism by which practitioners learned the accepted
practices of the profession. A well-designed curriculum can provide much of this
knowledge for software engineers while they are still in school. This can be of great
value, especially if the curriculum includes the best known practices from through-
out the profession, rather than just those of one or two organizations.

It is very important to note that software engineers will not necessarily know any
one software architecture as well as a computer scientist who specializes in that
area. When faced with the task of building an operating system, database system,
compiler, or other system whose basis is in computer science, the software engineer

CMU/SEI-90-TR-3 61

must know to assemble a project team that includes computer scientists with deep
knowledge of the science behind those systems. Similarly, when building an avion-
ics or radar system, the software engineer needs to bring scientists and engineers
from those disciplines to the team. The software engineer specializes in building
large systems rather than in the science behind all possible application areas.

The structure of this component of the curriculum is still under development. An
example may help explain how it differs from courses in a typical computer science
curriculum.

Consider the recurring problems of modeling or controlling concurrent processes and
managing computing resources such as processor time and memory space. In most
computer science curricula, these topics would be discussed in a course on operating
systems. A result is that most students will finish the course believing that concur-
rent programming, process scheduling, and memory management are useful only
when building a general purpose, timesharing operating system. A software archi-
tectures approach places the recurring problems and their solutions at the highest
level, with operating systems and other applications brought in as examples. (An
application of this idea to the design of an undergraduate computer science cur-
riculum can be found in [Shaw85].)

Some of the topics in this curriculum component are:

• Representation of data, information (including graphics and sounds), and
knowledge, from atomic through very large structures (this topic includes
traditional areas such as data structures, database systems, and graphics)

• Resource management: time, memory, processors (an application area
where these issues are critical is operating systems)

• Expert systems

• Embedded real-time systems

• Concurrent, parallel, and distributed software systems

• Translator systems (this topic includes compilers and assemblers)

We estimate that the material in this component will require four one-semester
courses. Because a major emphasis in these courses is analysis of why the particu-
lar architectures are good, appropriate analysis techniques are prerequisite.
However, it is not appropriate that the students complete all the software analysis
courses before beginning the first software architectures course. In many cases, two
courses in these two categories might be taken concurrently. It may also be
appropriate to design courses that include topics from both categories. An example
is a course that combines elementary analysis of algorithms with elementary data
structures; without the ability to analyze algorithms, the justification for certain
data structures is lost.

62 CMU/SEI-90-TR-3

8.3.2.3. Computer Systems

Software engineering is not all software. A software engineer must have a thorough
understanding of computer systems, including how the computer fits into larger
engineered systems. Most existing computer science curricula are deficient in this
area.

Topics in this area include:

• Computer organization and assembly language

• Computer architecture

• Digital systems, including laboratory work

• Embedded systems, interfacing computers to other devices

• Data communications

• Networks

• Fundamental concepts of robotics

We estimate that this material will require three one-semester courses. Because
these courses rely on some of the mathematics and software analysis material, they
are likely to be taken by students in the sophomore and junior years.

8.3.2.4. Software Process

The software process component is the software engineering curriculum counterpart
to engineering design. We choose this name partly because it is becoming a widely
understood term and partly because the term "design" has a much narrower inter-
pretation in the software community than in engineering in general.

Humphrey [Humphrey89] defines the term this way: "The software process is the
set of tools, methods, and practices we use to produce a software product." Some of
the topics in this area are:

Requirements analysis

Specification concepts and formal methods

Design

Implementation techniques and languages

Verification and validation

Software evolution

Evaluation of software products and processes

Software development team organization and management

Professional, ethical, and legal issues in software engineering

CMU/SEI-90-TR-3 63

We estimate that this material will require four one-semester courses. Because
these courses will require the students to demonstrate engineering judgment, the
pedagogical considerations discussed in Section 7.4 suggest that the courses be
taken in the junior and senior years. The software process courses build upon most
of the courses in the other three areas, which also argues for placing them late in the
curriculum.

One possible structure for the courses is as two year-long project courses. The fun-
damental methods of the software process could be introduced in the junior year
sequence and then reinforced and augmented in the senior year sequence. One of
the projects might be a maintenance effort rather than new development. In fact, an
argument can be made that the students should experience software maintenance
before attempting new development. This allows experience with a substantially
larger software system than could be developed by student teams. A carefully
chosen system can show the students important software architectures; and mainte-
nance projects can better motivate topics such as configuration management and
version control. With this experience, students will be better prepared to "design for
maintainability" in the subsequent project.

Whatever the course sequence, the students should be given substantial opportuni-
ties to experience, rather than just be told about, all parts of the software process.
Ways to accomplish this have been described in previous SEI reports [Tomayko87,
Engle89a].

8.3.3. Humanities, Social Sciences, and Electives

Section 7.4 of this report presented some ideas about the liberal education part of a
software engineering curriculum. Although we cannot give a list of specific courses
that are appropriate, we can suggest some goals for those courses.

The students should develop oral and written communication skills. This should
include not only the mechanics of these skills, but also the ability to think critically
and express ideas creatively. Literature, philosophy, and history courses can con-
tribute to these skills. The students should also develop an understanding of the
history and structure of civilization, government, and society, including cultures
other than their own, and an understanding of the emerging global economy. This
can help place the engineering profession in an appropriate context.

The curriculum structure presented in Section 8.2 allows 30 semester hours, or ten
courses, in the humanities and social sciences. It also allows 6 elective courses.
This provides considerable latitude for schools and students to develop appropriate
programs with both breadth and depth in the liberal arts.

64 CMU/SEI-90-TR-3

8.4. Descriptions of the Core Courses

In the previous section, we suggested that the material in the software engineering
courses might total fourteen courses in the areas of software analysis, software
architectures, computer systems, and software process. In this section, we present
very rough sketches of those fourteen courses.

8.4.1. Software Analysis 1

This course introduces the basic principles of software analysis. Its goal is to give
students an ability to apply formal and mathematically precise reasoning abilities to
programming. It introduces the idea of engineering measurement and the kinds of
things that can be measured for software: algorithmic complexity (worst case), pro-
gram performance, memory usage, reliability, etc. It also introduces the concepts of
abstraction and modeling. Student exercises include programming, but with
emphasis on careful development and on analysis of the algorithms developed.

Prerequisites: programming ability (equivalent to AP computer science)
Discrete Mathematics 1 (logic)

Topics: Reasoning about software products and processes
Formal development of algorithms and programs
Concepts of formal verification
Recursive algorithms
Programming paradigms
Software engineering measurement
Fundamentals of analysis of algorithms

8.4.2. Software Analysis 2

This course continues the development of analytic and formal methods skills.
Modeling is stressed, especially finite state machines and similar models that are
useful for software systems (as opposed to abstract computability models). Calculus-
based complexity theory is introduced to allow analysis of expected behavior (rather
than worst case). Important algorithms, such as searching and sorting, are ana-
lyzed. Computability and algorithmic intractability are presented to show absolute
and practical bounds on computing.

Prerequisites: Software Analysis 1
Discrete Mathematics 2
Calculus 2

Topics: Modeling concepts
Formal models of computation
Basic algorithm design strategies
Analysis of algorithms: advanced concepts, intractability
Computability

CMU/SEI-90-TR-3 65

8.4.3. Software Analysis 3

This course introduces a variety of advanced theoretical and analytic material
appropriate for an engineering curriculum. Much of the material is concepts from
traditional engineering disciplines adapted to software.

Prerequisites: Software Analysis 2
Computer Systems 1
Calculus 2
Probability and Statistics

Topics: Performance analysis, including concepts of hardware and
software monitors

Software reliability
Fundamental concepts of control theory
Fundamental concepts of information theory
More modeling concepts, including asynchronous and parallel models

8.4.4. Software Architectures 1

Architectures at the smallest scale include representation of fundamental data types
and data structures. Programming language structures for modularization and
encapsulation are also covered, including data abstraction. This and subsequent
software architectures courses are taught with emphasis on the application of the
results of computer science rather than the derivation of those results. Analysis
techniques are applied to all architecture examples to show why they are good.

Prerequisites: Software Analysis 1
Discrete Mathematics (set theory, graph theory)

Topics: Representation of atomic data
Basic data structures
Data structures for search problems
Fundamental programming language structures

8.4.5. Software Architectures 2

This course presents software architectures related to the recurring problems of con-
current systems and management of time and memory resources. The architectures
of several common kinds of system components are presented, including kernels and
layered architectures (as are often used in operating systems and programming sup-
port environments), and the basics of window managers and user interfaces.

Prerequisites: Software Architectures 1

Topics: Concurrency
Management of time and memory resources
Architecture of operating systems

66 CMU/SEI-90-TR-3

Architecture of window managers and user interfaces
Architecture of toolboxes and programming support environments

8.4.6. Software Architectures 3

This course addresses the recurring problems of the representation and manipula-
tion of large bodies of information and knowledge. Included are architectures of file
systems, database systems, and expert or knowledge-based systems, and common
approaches to data security and protection in large systems. As with the other soft-
ware architectures courses, the emphasis is on presenting the best currently known
solutions to these recurring problems and on using engineering analysis to deter-
mine why they are good.

Prerequisites: Software Architectures 2
Software Analysis 2
Computer Systems 1

Topics: Representation of information and knowledge
Fundamental representations of graphic data and sound
Architecture of file systems
Architecture of database systems
Architecture of expert or knowledge-based systems
Data security and protection

8.4.7. Software Architectures 4

This course presents a variety of software architectures for common types of sys-
tems. Translator systems include compilers, but the emphasis is on the architecture
of the systems and its applicability to other kinds of systems. For example, symbol
table techniques can be used in systems other than compilers. The students should
gain a basic understanding of the importance of formal language theory to compiler
construction, but they need not study that theory. Rather, they should understand
that computer scientists specializing in compilers are a necessary part of a software
engineering project to build a compiler. Similarly, the software architectures of real-
time, embedded, distributed, and network systems are presented. Note that the
hardware aspects of these complex systems have already been presented in the pre-
requisite computer systems courses.

Prerequisites: Software Architectures 3
Computer Systems 2, 3

Topics: Architecture of translator systems
Architecture of real-time and embedded systems
Architecture of distributed and network systems

CMU/SEI-90-TR-3 67

8.4.8. Computer Systems 1

This course covers the material in the computer organization course in a typical
computer science curriculum. The assembly language component is relatively small
and not intended to give the ability to develop entire programs in assembly
language.

Prerequisites: Software Analysis 1
Discrete Mathematics (boolean algebra)

Topics: Computer organization
Memory systems
Assembly language
Basic concepts of computer architecture
Other computer architectures (supercomputers, etc.)

8.4.9. Computer Systems 2

This course is intended to give the software engineer a sufficient hardware back-
ground to work with hardware engineers on all kinds of embedded systems. It
should include some laboratory work to give the student an appreciation of inter-
faces, timing, interrupts, and the basic components of digital systems. Engineering
measurement and testing fundamentals should be included.

Prerequisites: Computer Systems 1

Topics: Digital logic and systems
Input and output
Interrupt handling
Interfaces between computers and other devices (sensors, effectors, etc.)

8.4.10. Computer Systems 3

Because many of the most complex software systems are embedded in larger com-
plex hardware and communication systems, a software engineer must have a sub-
stantial appreciation of many systems engineering concepts. This course presents
many of the hardware aspects of such systems. Concepts of distributed systems,
networks, and data communications constitute a major portion of the course.
Embedded systems, including applications such as robotics, constitute the remain-
der of the course. Software analysis material on information theory and control
theory are applied in this course.

Prerequisites: Computer Systems 2
Software Analysis 3

Topics: Hardware aspects of distributed systems
Computer networks
Data communications

68 CMU/SEI-90-TR-3

Embedded systems
Fundamentals concepts of robotics

8.4.11. Software Process 1

This course introduces the process by which large software systems are built by
teams of developers. It concentrates on the early life cycle phases and is taught with
a substantial student project component. A continuing development or maintenance
project may be chosen to allow students to work on a very large system without
having to create it in its entirety.

Prerequisites: Software Analysis 2
Software Architectures 2

Topics: Software quality issues
Project planning
Software configuration management
Software technical reviews
Software requirements analysis
Software specification
Structure, content, and standards for specification documents
Software design fundamental principles, methods, and representations

8.4.12. Software Process 2

This course completes a first pass through the fundamental software processes. It
concentrates on implementation, verification, and validation. This course can con-
tinue the student project begun in the previous course.

Prerequisites: Software Process 1

Topics: Implementation considerations: language structures and programming
techniques
Software verification and validation
Software maintenance concepts
Regression testing

8.4.13. Software Process 3

This course begins a second pass through the software process, this time with
increased depth, formalism, and/or use of tools. Aspects of the software process that
are based more on judgment than on hard science are introduced; these include
software project management concepts, cost estimation, and human factors.
Professional, ethical, and legal issues in software engineering are also presented.
This course should also have a substantial student project that can carry over into
the next course. The project should involve new development of a substantial sys-

CMU/SEI-90-TR-3 69

tern and should allow the students to apply some of the advanced software analysis
and architectures material.

Prerequisites: Software Process 2
Software Analysis 3
Software Architectures 4
Computer Systems 2
Numerical Methods

Topics: Software project management and team organization
Cost estimation
Systems engineering considerations
Software prototyping
Human factors
Formal specification languages and tools
Software design methods and tools
Professional, ethical, and legal considerations for software engineers

8.4.14. Software Process 4

This course completes the second pass through the software process. It also stresses
increased depth, formalism, and/or use of tools for the later phases of the life cycle.
Students should be challenged to demonstrate substantial skills in engineering
analysis, synthesis, and judgment.

Prerequisites: Software Process 3-

Topics: Software implementation: application generators, reuse
Software verification and validation
Software reliability
Integration, system, and acceptance testing

8.5. Course Schedule

Figure 8.5 shows how the courses in the curriculum might be scheduled. Further
refinement of this diagram will be necessary after the content of each of the courses
is refined.

The freshman year includes both discrete mathematics and calculus. The probabil-
ity and statistics course and the numerical methods course are scheduled in the
junior year. The basic science courses are placed in the sophomore and senior years
because they should follow calculus and because they are not direct prerequisites for
other courses.

70 CMU/SEI-90-TR-3

Curriculum

Category

Freshman Sophomore Junior Senior

Fall Spring Fall Spring Fall Spring Fall Spring

Mathematics • • • • • •

Science • • •

Software
Analysis • • •

Software
Architectures • • • •

Computer
Systems • • •

Software
Process • • • • •

SE Electives •

Humanities,
Social Science • • • • • • • • • •

Electives • • • • • •

Figure 8.5. Curriculum schedule

The first software analysis course is placed in the second semester in order to
accommodate those students who need to satisfy the programming prerequisite dur-
ing the first semester and to allow the course to build on some of the discrete
mathematics from the first semester. Software architectures and computer systems
sequences begin in the sophomore year; these are the heart of the engineering
science part of the curriculum. This placement allows, for example, the first course
in software architectures (which will be mostly data structures) to use the tech-
niques from the first software analysis course (which includes formal development of
algorithms). The software process course sequence, which embodies most of the
engineering design part of the curriculum, begins in the junior year. It builds upon
the first two courses in each of software analysis, software architectures, and com-
puter systems. The senior year software process courses can build on the more
advance courses in the other three categories.

Variations of this schedule are possible. There is considerable latitude in rearrang-
ing the science, advanced math, elective, and humanities and social science courses
to meet the needs of individual students.

CMU/SEI-90-TR-3 71

8.6. Program Evolution Strategy

The program sketched above can evolve top-down as a track in a computer science
department, as discussed in Section 6.1. The major steps might be as follows:

1. Introduce a one-semester software engineering project course as a senior
year elective.

2. Expand the project course to two semesters.

3. Increase the discrete mathematics requirement.

4. Increase the amount of formal software analysis material in existing courses
on data structures, analysis of algorithms, operating systems, and theory of
computation.

5. Add a digital systems course with laboratory.

6. Expand the software engineering project course to four semesters, introduc-
ing increased use of disciplined approaches, the use of software engineering
tools, and software maintenance.

7. Introduce the first two software analysis and first two software architectures
courses as new, coherent courses.

8. Introduce the remainder of the core courses.

9. Introduce advanced software engineering electives.

We would expect that five years might be needed for this evolution. During that
time, not only could the new and revised courses be designed, but faculty members
could be given opportunities to develop their own knowledge of software engineering.
We might also expect that new textbooks for these courses will begin to appear in
three to five years, so the timing of the introduction of some courses may be
influenced by the appearance of an appropriate book.

72 CMU/SEI-90-TR-3

9. Summary and Conclusions

The purpose of this report is to provide a variety of information that will stimulate
widespread, rational discussion of issues in undergraduate software engineering
education. Those issues include the definition of the software engineering discipline
and its relationship to computer science, the need for undergraduate software engi-
neering education, program accreditation, professional licensing, and the design and
evolution of undergraduate software engineering curricula. In this chapter we
summarize the report's discussions of those issues and draw some conclusions about
the future.

Definitions of software engineering appearing in the literature exhibit a small num-
ber of recurring concepts that are important to understanding the discipline. These
include:

Principles: Software engineering can be and is being built on a number of
principles. Software need not always be built in an ad hoc manner.

Discipline: The methods of software engineering are systematic and disci-
plined; this is absolutely essential for large products built by
teams.

Quality: Quality must be built into a software product throughout the
development process. It cannot be "added on" through a testing
and debugging cycle.

Economics: Software engineers must work in the real world and must there-
fore recognize and appreciate the economics of building useful
systems. Engineering judgment is required.

Software engineering education is needed at the undergraduate level because the
vast majority (perhaps 80% or more) of software professionals will not pursue an
advanced degree. There are now about 20% fewer 18-year olds in the United States
than there were ten years ago, and university enrollment trends indicate a
substantial decline in the percentage of students majoring in computer science. The
1990s may produce only 25% to 50% as many graduates in computer science per
year as the mid-1980s.

There are currently no undergraduate programs in software engineering in the
United States, although there are nearly 1000 colleges and universities offering
computer science degrees. We believe that 10% to 20% of those schools could even-
tually offer undergraduate software engineering degrees.

There are two organizations that might ultimately accredit undergraduate software
engineering programs, the Accreditation Board for Engineering and Technology
(ABET) and the Computing Science Accreditation Board (CSAB). Both require that

CMU/SEI-90-TR-3 73

a program have already produced graduates before it can be accredited, so it is still
several years before accreditation of software engineering programs will be possible.
Furthermore, both depend on professional societies for establishing accreditation
guidelines. Thus, the Association for Computing Machinery (ACM) and the
Computer Society of the Institute for Electrical and Electronic Engineers (IEEE-CS)
will most likely be involved in any effort to accredit software engineering programs.

The general accreditation guidelines of the two organizations are somewhat differ-
ent, and it is unlikely that a software engineering program could be designed that
simultaneously satisfies both sets of guidelines. An agreement between ABET and
CSAB makes it most likely that any program with the word "engineering" in its title,
including software engineering, would have to be accredited by ABET.

Certification of software professionals is a voluntary process administered by the
profession itself. The Institute for the Certification of Computer Professionals has
awarded certification in computer programming and in data processing for several
years. There are a few efforts currently underway to define certification standards
for software engineers and specialists in information systems security.

Licensing of engineers is a mandatory process administered by government (in the
United States, by the individual states). Unlicensed engineers are subject to signifi-
cant restrictions on their professional activities. There does not seem to be any cur-
rent activity to require licensing of software engineers. For now, this is probably the
most desirable situation because the discipline of software engineering is not yet suf-
ficiently mature to permit a meaningful legal definition of appropriate standards for
professional competence.

In spite of the fact that undergraduate software engineering programs may ulti-
mately be accredited as engineering programs, it is likely that they will evolve as
separate tracks within computer science programs. A top-down evolution strategy
introduces a software engineering project course at the senior level and then, over a
period of several years, brings increasing coverage of software engineering topics
earlier into the curriculum. This strategy has fewer risks than bottom-up or all-at-
once strategies, and it postpones the need to fight political battles over the use of the
word "engineering" in the program title.

Eventually, a bachelor of science in software engineering (BSSE) degree can be sep-
arate from a computer science (BSCS) degree. A BSSE curriculum is likely to look
very much like a traditional engineering degree in its overall structure, in that it
begins with mathematics and basic science, then presents engineering science, and
finally presents engineering design. The major differences from a traditional cur-
riculum are in the choices of which mathematics, engineering science, and engineer-
ing design subjects are emphasized.

Because software engineering is not concerned with using the forces and materials
of nature, discrete mathematics will have a large role and continuous mathematics a

74 CMU/SEI-90-TR-3

smaller role. Computer science will be a more important engineering science than
will be thermodynamics, for example. The engineering design material is still evolv-
ing rapidly; we do not yet know very much about the "routine" practices of software
engineering.

We have presented a strawman curriculum for a BSSE degree that focuses on four
fundamental software engineering subject areas: software analysis, software archi-
tectures, computer systems, and the software process. We solicit comments on this
strawman and plan to incorporate suggestions in our next report.

Resources will be required to support increased software engineering at the under-
graduate level. Faculty resources will be critical to the introduction of better soft-
ware engineering education, so faculty development should be a high priority for
schools considering new courses and programs (graduate or undergraduate).
Fortunately, there has- been recently widespread discussion of science and engineer-
ing educational issues in government and industry, and it is likely that increased
funding will soon be available from a variety of sources.

We conclude that undergraduate software engineering programs are a desirable and
inevitable part of the spectrum of software engineering education. Even though the
discipline is still emerging, we can introduce high-quality software engineering
courses into existing computer science programs, and we can begin designing com-
plete software engineering programs. We can anticipate the emergence of these pro-
grams in the mid-1990s and accreditation shortly thereafter. We invite the aca-
demic and professional communities to cooperate and collaborate with us to make
this vision a reality.

CMU/SEI-90-TR-3 75

Appendix 1. Report on the SEI Workshop on an
Undergraduate Software Engineering
Curriculum

The SEI Workshop on an Undergraduate Software Engineering Curriculum was
held on July 21,1989, in Pittsburgh, as part of the 1989 SEI Education and Training
Week. The participants were selected from those submitting position papers on
appropriate topics. They included:

Lionel E. Deimel SEI

Charles B. Engle, Jr. U.S. Army Resident Affiliate at SEI
(now at the Florida Institute ofTechnoi

Gary Ford SEI

Frank L. Friedman Temple University

Norman E. Gibbs SEI

William E. Richardson United States Air Force Academy

David Alex Lamb Queen's University

Jeffrey A. Lasky Rochester Institute of Technology

James R. Lyall Embry-Riddle Aeronautical University

Frances L. Van Scoy West Virginia University

Richard Louis Weis University of Hawaii at Hilo

Stuart H. Zweben Ohio State University

The workshop began with opening statements by each participant, based on the
position papers. It is interesting to note that the positions were widely varied, and
there was no apparent trend or consensus on any issue. The position papers of the
participants are summarized very briefly below to illustrate their variety; the full
papers are in [Gibbs89b].

Lionel Deimel [Deimel89] discusses the importance of programming-in-the-small to
both computer science and software engineering curricula. He suggests that com-
puter science is more than programming and that it is right for computer science
curricula not to spend inordinate amounts of time addressing issues such as docu-
mentation, formal techniques, style, and debugging and testing skills. He then
argues that such skills are very important to software professionals, and that they
should be emphasized in an undergraduate software engineering curriculum. He
supports the idea of establishing such programs.

Chuck Engle [Engle89b] argues that computer science and software engineering are
different disciplines. He defines the roles of programmer, computer scientist, soft-

76 CMU/SEI-90-TR-3

ware engineer, and software project manager to help describe the two disciplines.
He then describes a number of issues that would distinguish a software engineering
curriculum from a computer science curriculum. He concludes that although we can
identify the kind of material that should be in a curriculum, our understanding of
large-scale software development is insufficient to allow us to establish a meaningful
curriculum at this time.

Gary Ford [Ford89a] suggests that undergraduate software engineering programs
are inevitable but that the most valuable contribution in the immediate future is not
the design of courses. Instead, we should first examine issues such as how well the
software engineering community is being served by existing computer science cur-
ricula, what appropriate educational objectives are for undergraduate programs in
both computer science and software engineering in the 21st century, and how
software engineering programs might realistically evolve in computer science
departments.

Frank Friedman [Friedman89a] summarizes his views in the title of his position
paper, "A Separate Undergraduate Software Engineering Curriculum Considered
Harmful." He argues that most science and engineering disciplines have become
increasingly obsessed with technical content, to the detriment of the students'
general education. A better approach is to broaden the undergraduate program and
postpone specialization to the graduate level.

Norm Gibbs [Gibbs89c] discusses the increasing gap between the skills and attitudes
of computer science undergraduates and the needs of the software industry. He
supports the ideas of the three paradigms of computing and the common basis for all
computing curricula, as described in [Denning89], and suggests that it may be time
to consider undergraduate programs that emphasize design over abstraction and
theory. This might be accomplished by providing four semesters of software engi-
neering study in addition to the computing core. He concludes that the development
of new programs may take faculty from computer science programs, resulting in
unfortunate fragmentation of the field of computer science.

Bill Richardson [Jones89] argues that it is premature to develop separate software
engineering programs and that it is possible to incorporate the most important
aspects of software engineering into an existing computer science program. This can
be accomplished by introducing the seeds of software engineering concepts in the
beginning courses, using appropriate software engineering tools and methods in
courses throughout the curriculum, and adding a year-long capstone course in soft-
ware engineering to bring all the concepts together.

David Lamb [Lamb89] suggests that several concerns must be addressed prior to
considering the content of software engineering programs. First is the audience for
various programs in computing: students who want only basic familiarity with com-
puters, those wishing to be computing specialists in another discipline, those prepar-

CMU/SEI-90-TR-3 77

ing for careers in software, those planning graduate study in computer science, etc.
He also discusses differences between science and engineering and how those differ-
ences affect curriculum design and content. He also considers the practical and
political aspects of introducing a new curriculum with the word "engineering" in its
title.

Jeff Lasky [Lasky89] identifies several scenarios for increased software engineering
education at the undergraduate level: concentrations within computer science
programs; concentrations within computer engineering programs; upper-division
offerings drawing students from two-year programs in computer science, information
systems, or engineering science; and complete undergraduate programs. He dis-
cusses the institutional and political impediments to all of these scenarios and
suggests a unique solution. An academic unit outside all affected departments offers
a two-year computing core, with students then completing degrees in specific disci-
plines through various departments.

Jim Lyall [Lyall89] describes some of the areas of software engineering identified by
industry as being critically important. Almost none are covered by current computer
science programs. He argues that software engineering is appropriately named,
despite many narrow interpretations of the definition of "engineering" that have
appeared. He also describes an effort at his university to determine the feasibility of
establishing an undergraduate software engineering program.

Frances Van Scoy [VanScoy89] provides a detailed and wide-ranging plan for
evolving a software engineering program within an existing computer science pro-
gram. The steps are: introducing Ada as a first programming language to permit
teaching more modern programming concepts; adopting a broad overview of com-
puter science in the beginning courses (as suggested in [Denning89]); creating a
variety of software engineering elective courses in the junior and senior years; split-
ting the computer science curriculum into two tracks; and, finally, creating distinct
programs.

Dick Weis [Weis89] describes efforts at his university to introduce a substantial
amount of software engineering material throughout the undergraduate computer
science curriculum. The material was selected partly in response to a study made by
IBM (where Weis worked before joining the faculty) of the professional knowledge
and skill deficiencies of computer science graduates, as perceived by software profes-
sionals and managers. The material provided increased emphasis on tasks across
the entire software life cycle, more emphasis on analysis and design, large team
projects, communications skills, and ethics and professionalism issues.

Stu Zweben [Zweben89] acknowledges that a large percentage of computer science
graduates enter careers in software development and that computer science pro-
grams have a responsibility to teach appropriate software engineering concepts. He
specifically mentions software testing and the role of design as topics that should

78 CMU/SEI-90-TR-3

receive increased coverage from the beginning of the curriculum. Tool use is another
concept deserving increased coverage, but the current lack of consensus on what
tools to use and lack of availability of reasonably priced tools impede effective
teaching of this topic. Zweben recommends an evolutionary approach that builds on
the expected ACM/IEEE-CS curriculum guidelines.

The workshop participants then discussed their perceptions of the deficiencies in
current computer science education. The discussion identified five areas for
improvement.

• Faculty knowledge and attitudes

The current faculty in computer science programs are in many cases naive
about software engineering, about education, and about curriculum devel -
opment. They tend to be narrowly specialized and do not see software
engineering as intellectually acceptable.

• Institutional attitudes, objectives, and resources

Academic institutions do not recognize that computer science and software
engineering have different objectives. The reward structure does not rec-
ognize teaching and curriculum development. There are limited resources
for building new expertise among faculty or new programs. Industrial
organizations treat software engineering knowledge as proprietary, inhibit-
ing cooperative research efforts with universities.

• The maturity of the software engineering discipline

The discipline is still in search of basic principles. It still appears that
software engineering is a craft requiring talent more than a profession
requiring skill.

• Current computer science programs

Computer science curricula tend to treat programming too informally and
stress only small, throw-away programs. There is no treatment of the idea
that the methods of programming-in-the-small do not scale up. There is no
significant treatment of domain-specific software systems knowledge.
There is no focus or integration of topics; many curricula still consist of one
course in each of several computer science topic areas. There is a shortage
of good educational materials for software engineering.

• Students

The quality of students entering computer science is declining. The wrong
students are choosing computing majors.

The workshop concluded with a discussion of possible tasks for the SEI that would
advance the state of undergraduate software engineering education. These included:

• Attempt to change attitudes that computer science and software engineer-
ing are narrow or shallow fields.

CMU/SEI-90-TR-3 79

• Examine the reports of the two ACM/IEEE-CS task forces to determine how
well software engineering curricula would fit with their recommendations.

• Examine the curriculum recommendations of the BCS and IEE [BCS89] to
determine if they are also applicable to United States universities.

• Develop more opportunities for faculty development. Find a way for com-
puter science educators to experience a large team project.

• Look for opportunities to influence textbook publishers to seek better cover-
age of software engineering in undergraduate textbooks.

• Investigate and publicize opportunities for faculty enhancement, such as
those funded by NSF.

• Provide teaching modules to bring software engineering material into
undergraduate computer science programs (perhaps modeled after the
SEFs graduate curriculum modules). Include discussions of adding soft-
ware engineering topics to computer science courses at future SEI Educator
Development Workshops.

• Provide "marketing" material, such as videotapes, to attract the best high
school students to software engineering.

• Publicize the efforts, especially the successes, of schools to build software
engineering programs and to attract good students.

• Provide a forum for university deans to interact with industry and govern-
ment software managers, in order to begin building the collaboration
needed for an educational infrastructure to meet a national need.

At the end of the workshop, there was nearly unanimous agreement that a widely
distributed SEI report on undergraduate issues would be an important step in accel-
erating the development of high-quality undergraduate software engineering
programs. It was suggested that the report address issues of the objectives and con-
tent of such a program, and it should describe both revolutionary and evolutionary
approaches to the creation of these programs. The participants also agreed to serve
as reviewers of SEI reports and other materials and as the nucleus of an informal
advisory group for undergraduate issues.

80 CMU/SEI-90-TR-3

Appendix 2. Bloom's Taxonomy of Educational
Objectives

Bloom [Bloom56] has defined a taxonomy of educational objectives that describes
several levels of knowledge, intellectual abilities, and skills that a student might
derive from education. An adaptation of this taxonomy for software engineering is
shown in Figure A2.1. This taxonomy can be used to help describe the objectives,
and thus the style and depth of presentation, of a software engineering curriculum.

Evaluation: The student is able to make qualitative and quantitative
judgments about the value of methods, processes, or artifacts. This
includes the ability to evaluate conformance to a standard, and the
ability to develop evaluation criteria as well as apply given criteria.
The student can also recognize improvements that might be made to
a method or process, and to suggest new tools or methods.

Synthesis: The student is able to combine elements or parts in
such a way as to produce a pattern or structure that was not
clearly there before. This includes the ability to produce a plan
to accomplish a task such that the plan satisfies the require-
ments of the task, as well as the ability to construct an artifact,
it also includes the ability to develop a set of abstract relations
either to classify or to explain particular phenomena, and to
deduce new propositions from a set of basic propositions or
symbolic representations.

Analysis: The student can identify the constituent elements
of a communication, artifact, or process, and can identify the
hierarchies or other relationships among those elements.
General organizational structures can be identified.
Unstated assumptions can be recognized.

Application: The student is able to apply abstractions
in particular and concrete situations. Technical prin-
ciples, techniques, and methods can be remembered
and applied. The mechanics of the use of appropriate
tools nave been mastered.

Comprehension: This is the lowest level of under-
standing. The student can make use of material or
ideas without necessarily relating them to others or
seeing the fullest implications. Comprehension can
be demonstrated by rephrasing or translating infor-
mation from one form of communication to another,
by explaining or summarizing information, or by
being able to extrapolate beyond the given
situation.

Knowledge: The student learns terminology and
facts. This can include knowledge of the existence
and names of methods, classifications, abstrac-
tions, generalizations, and theories, but does not
include any deep understanding of them. The
student demonstrates this knowledge only by
recalling information.

Figure A2.1. Bloom's taxonomy of educational objectives

CMU/SEI-90-TR-3 81

Bibliography

ABET88 Accreditation Board for Engineering and Technology, Inc. 1988
Annual Report. ABET, New York, Sept. 1988.

Ardis89 Ardis, M., and Ford, G. 1989 SEI Report on Graduate Software
Engineering Education. Tech. Rep. CMU/SEI-89-TR-21, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pa., June 1989.

Barnes88 Barnes, B. H., Bjornson, J. D., Engle, G. L., Gear, C. W., Lewis, P.
M., Miller, R. E., and Mulder, M. Computer Science: The
Discipline and the Profession. Tech. Rep. SPC-TN-88-001,
Software Productivity Consortium, Reston, Va., Feb. 1988.

Bauer72 Bauer, F. L. "Software Engineering." Information Processing 71.
Amsterdam: North Holland, 1972.

BCS89 A Report on Undergraduate Curricula for Software Engineering
Curricula. The British Computer Society and The Institution of
Electrical Engineers, June 1989.

Bloom56 Bloom, B. Taxonomy of Educational Objectives: Handbook I:
Cognitive Domain. New York: David McKay, 1956.

Cain86 Cain, J. T. "Professional Accreditation for the Computing
Sciences." IEEE Computer (Jan. 1986), 91-96.

Congress89 U. S. Congress. House Committee on Science, Space, and
Technology. Bugs in the Program; Problems in Federal
Government Computer Software Development and Regulation.
101st Cong., 1st Sess., Serial G, Sept. 1989. Committee Print.

CSAB87 Criteria for Accrediting Programs in Computer Science in the
United States. Computing Sciences Accreditation Board, Inc., New
York, N. Y, Jan. 1987.

Culver82 Culver, R. S., and Hackos, J. T. "Perry's Model of Intellectual
Development." Engineering Education (Dec. 1982).

Deimel89 Deimel, L. E. "Programming and Its Relation to Computer Science
Education and Software Engineering Education." Software
Engineering Education, Norman E. Gibbs, ed. New York:
Springer-Verlag, 1989, 253-256.

Denning89 Denning, P. J., Comer, D. E., Gries, D., Mulder, M. C, Tucker, A.,
Turner, A. J., and Young, P. R. "Computing as a Discipline."
Comm. ACM 32,1 (Jan. 1989), 9-23.

Engle89a Engle, C. B., Jr., Ford, G., and Korson, T. Software Maintenance
Exercises for a Software Engineering Project Course. Educational
Materials CMU/SEI-89-EM-1, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pa., Feb. 1989. Includes
distribution diskettes for software.

82 CMU/SEI-90-TR-3

Engle89b

Fairley85

Florman86

Ford87

Ford89a

Ford89b

Friedman89a

Friedman89b

Gibbs86

Gibbs87

Gibbs89a

Gibbs89b

Gibbs89c

Engle, C. B., Jr. "Software Engineering is Not Computer Srience."
Software Engineering Education, Norman E. Gibbs, ed. New York:
Springer-Verlag, 1989, 257-262.

Fairley, R. Software Engineering Concepts. New York: McGraw-
Hill, 1985.

Florman, S. C. "Toward Liberal Learning for Engineers."
Technology Review (Feb./Mar. 1986), 18-25.

Ford, G., Gibbs, N., and Tomayko, J. Software Engineering
Education; An Interim Report from the Software Engineering
Institute. Technical Report CMU/SEI-87-TR-8, DTIC: ADA
182003, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pa., May 1987.

Ford, G. "Anticipating the Evolution of Undergraduate Software
Engineering Curricula." Software Engineering Education, Norman
E. Gibbs, ed. New York: Springer-Verlag, 1989, 263-266.

Ford, G. A., and Gibbs, N. E. "A Master of Software Engineering
Curriculum; Recommendations from the Software Engineering
Institute." Computer 22, 9 (Sept. 1989), 59-71.

Friedman, F. L. "A Separate Undergraduate Software
Engineering Curriculum Considered Harmful." Software
Engineering Education, Norman E. Gibbs, ed. New York:
Springer-Verlag, 1989, 267-270.

Friedman, H. H., and Friedman, L. W. "Myths, Unethical
Practices, Personnel Requirements: What Do Computer Industry
Professionals Really Believe?" J. Systems and Software 10, 2
(Sept. 1989), 151-153.

Gibbs, N. E., and Tucker, A. B. "A Model Curriculum for a Liberal
Arts Degree in Computer Science." Comm. ACM 29, 3 (Mar. 1986),
202-210.

Software Engineering Education: The Educational Needs of the
Software Community. Norman E. Gibbs, Richard E. Fairley, eds.
New York: Springer-Verlag, 1987.

Gibbs, N. E. "The SEI Education Program: The Challenge of
Teaching Future Software Engineers." Comm. ACM 32, 5 (May
1989), 594-605.

Software Engineering Education. Norman E. Gibbs, ed. New
York: Springer-Verlag, 1989. Proceedings of the 1989 SEI
Conference on Software Engineering Education.

Gibbs, N. E. "Is the Time Right for an Undergraduate Software
Engineering Degree?" Software Engineering Education, Norman
E. Gibbs, ed. New York: Springer-Verlag, 1989, 271-274.

CMU/SEI-90-TR-3 83

Gorgone89

Gries89

Hopcroft87

Humphrey89

IEEE83

Jeffery77

Jensen79a

Jensen79b

Jones89

Kuo89

Lamb88

Lamb89

Lasky89

Lewis89

Gorgone, J. T., and McGregor, J. D. "Computing Sciences
Accreditation: A Cooperative Effort in CIS." Computer Science
Education 1, 2 (1989), 99-110.

Gries, D., and Marsh, D. "The 1987-1988 Taulbee Survey."
Comm.ACM32,10 (Oct. 1989), 1217-1224.

Hopcroft, J. E. "Computer Science: The Emergence of a
Discipline." Comm. ACM 30, 3 (Mar. 1987), 198-202.
Transcription of the 1986 ACM Turing Award Lecture .

Humphrey, W. S. Managing the Software Process. Reading,
Mass.: Addison-Wesley, 1989.

IEEE Standard Glossary of Software Engineering Terminology.
ANSI/IEEE Std. 729-1983, IEEE, 1983.

Jeffery, S., and Linden, T. A. "Software Engineering is
Engineering." Proc. Computer Science and Engineering Curricula
Workshop. IEEE, June 1977, 112.

Software Engineering. Randall W. Jensen; Charles C. Tonies, eds.
Englewood Cliffs, N. J.: Prentice-Hall, 1979.

Jensen, R. W., and Tonies, C. C. "Software Engineering
Education: A Constructive Criticism." Software Engineering,
Randall W. Jensen; Charles C. Tonies, eds. Englewood Cliffs, N.
J.: Prentice-Hall, 1979, 553-567.

Jones, L. G., and Richardson, W. E. "Software Engineering as Part
of an Undergraduate Computer Science Program." Software
Engineering Education, Norman E. Gibbs, ed. New York:
Springer-Verlag, 1989, 275-279.

Kuo, F. F. "Let's make our best people into software engineers and
not computer scientists." Computer Decisions 1, 2 (Nov. 1969), 94.

Lamb, D. A. Software Engineering: An Emerging Profession?
External Tech. Rep. 88-233, Queen's University, Kingston,
Ontario, Canada, Sept. 1988.

Lamb, D. A. "Questions in Planning Undergraduate Software
Engineering." Software Engineering Education, Norman E. Gibbs,
ed. New York: Springer-Verlag, 1989, 280-284.

Lasky, J. A. "Undergraduate Software Engineering Education:
Prospects and Opportunities." Software Engineering Education,
Norman E. Gibbs, ed. New York: Springer-Verlag, 1989, 285-288.

Lewis, P. M. "Information Systems is an Engineering Discipline."
Comm. ACM 32, 9 (Sept. 1989), 1045-1047.

84 CMU/SEI-90-TR-3

.

Lyall89

Mills89

Nash89

Naur69

Northrop89

NRC85

NSB86

NSF88

OTA89

Parnas90

Pennsylvania84

Perry70

Preiss89

Lyall, J. R., and Agrawal, J. G. "Position Statement: Software
Engineering Undergraduate Education." Software Engineering
Education, Norman E. Gibbs, ed. New York: Springer-Verlag,
1989, 289-293.

Mills, H. D., R.Basili, V., Gannon, J, d., and Hamlet, R. G.
"Mathematical Principles for a First Course in Software
Engineering." IEEE Trans. Software Engineering 15, 5 (May
1989), 550-559.

Nash, J. C., and Nash, M. M. "Information Systems is a General
Discipline." Comm. ACM 32,12 (Dec. 1989), 1395.

Software Engineering; Report of a Conference Sponsored by the
NATO Science Committee, Garmisch, Germany, 1968. Peter Naur,
Brian Randell, eds. Brussels, Belgium: NATO Science Committee,
1969.

Northrop, L. M. "Success with the Project-Intensive Model for an
Undergraduate Software Engineering Course." The Papers of the
Twentieth SIGCSE Technical Symposium on Computer Science
Education, Robert A. Barrett, Maynard J. Mansfield, eds. New
York: ACM, Feb. 1989,151-155.

National Research Council, Commission on Engineering and
Technical Systems. Engineering Education and Practice in the
United States: Foundations of Our Techno-Economic Future.
Washington, D.C.: National Academy Press, 1985.

NSB Task Committee on Undergraduate Science and Engineering
Education. Undergraduate Science, Mathematics and Engineering
Education. NSB 86-100, National Science Board, Washington,
D.C., Mar. 1986.

Profiles-Computer Sciences: Human Resources and Funding. NSF
88-324, National Science Foundation, Washington, D.C., 1988.

U. S. Congress, Office of Technology Assessment. Holding the
Edge: Maintaining the Defense Technology Base. OTA-ISC-420,
U.S. Government Printing Office, Washington, D. C, Apr. 1989.

Parnas, D. L. "Education for Computing Professionals." Computer
23, 1 (Jan. 1990), 17-22.

Professional Engineers Registration Law, Act of 1945, P. L. 913,
No. 367, Amended Jan. 1, 1984. 1984.

Perry, W. G., Jr. Forms of Intellectual and Ethical Development in
the College Years: A Scheme. New York: Holt, Rinehart and
Winston, 1970.

Preiss, R. J. "Computer security practitioner certification plan."
Computer 22, 9 (Sept. 1989), 77-78.

CMU/SEI-90-TR-3 85

Richardson88

Schein72

Shaw85

Shaw89

Tomayko87

Tomayko89

US84

VanScoy89

Weinberg84

Weis89

Wilson89

Zweben89

Richardson, W. E. "Undergraduate Software Engineering
Education." Software Engineering Education, Gary A. Ford, ed.
New York: Springer-Verlag, 1988,121-144.

Schein, E. H., and Kommers, D. W. Professional Education: Some
New Directions. New York: McGraw-Hill, 1972.

The Carnegie-Mellon Curriculum for Undergraduate Computer
Science. Mary Shaw, ed. New York: Springer-Verlag, 1985.

Shaw, M. Software and Some Lessons from Engineering.
Videotape TECH-MS-01-01, Software Engineering Institute,
Pittsburgh, Pa., Mar. 1989.

Tomayko, J. E. Teaching a Project-Intensive Introduction to
Software Engineering. Tech. Rep. CMU/SEI-87-TR-20, DTIC:
ADA 200603, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pa., Mar. 1987.

Tomayko, J. E. "Is Software Engineering Graduate-Level
Material?" J. Systems and Software 10, 4 (Nov. 1989), 231-234.

Code of Federal Regulations. 1984.

Van Scoy, F. L. "Developing an Undergraduate Software
Engineering Curriculum within an Existing Computer Science
Program." Software Engineering Education, Norman E. Gibbs, ed.
New York: Springer-Verlag, 1989, 294-303.

Weinberg, D., and Weinberg, G. "Constructing New Knowledge:
The Experiential Learning Model." Data Training (Nov. 1984), 26-
28.

Weis, R. L. "Software Engineering in a BS in Computer Science."
Software Engineering Education, Norman E. Gibbs, ed. New York:
Springer-Verlag, 1989, 304-309.

Wilson, G. L. "Designing a Better Engineer." Technology Review
(1989), 3,13.

Zweben, S. H. "Integrating Software Engineering into an
Undergraduate Computer Science Curriculum." Software
Engineering Education, Norman E. Gibbs, ed. New York:
Springer-Verlag, 1989, 310-312.

86 CMU/SEI-90-TR-3

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
lb. RESTRICTIVE MARKINGS

NONE
2a. SECURITY CLASSIFICATION AUTHORITY

N/A
2b. OECLASSIFICATION/OOWNGRAOING SCHEDULE

N/A

3. OISTRIBUTION/AVAILABILITY OF REPORT

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

4. PERFORMING ORGANIZATION REPORT NUMSER(S)

CMU/SEI-90-TR-3

S. MONITORING ORGANIZATION REPORT NUMBER(S)

ESD-TR-90-204
6a. NAME OF PERFORMING ORGANIZATION

SOFTWARE ENGINEERING INST.

Sb. OFFICE SYMBOL
(If applicable)
SEI

7a. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE

6c AOORESS (City. Slate and ZIP Cod*)

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

7b. AOORESS (City. State and ZIP Code)

ESD/XRS1
HANSCOM AIR FORCE BASE
HANSftPM. MA ni7?i

8a. NAME OF FUNOING/SPONSORING
ORGANIZATION

SEI JOINT PROGRAM OFFICE

8b. OFFICE SYMBOL
(If applicable)

ESD/XRS1

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962890C0003

8c AOORESS (City. State and ZIP Coda)

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO.

63752F

1990 SEI REPORT ON UNDERGRADUATE SOFTWARE ENGINEERING EDI
11. TITLE (Include Security Classification)

PROJECT
NO.

N/A

TASK
NO.

N/A

WORK UNIT
NO.

N/A

12. PERSONAL AUTHOR(S)
Gary Ford

13a, TYPE OF REPORT

FTNAT,

13b. TIME COVERED

FROM TO

14. OATE OF REPORT lYr., Mo.. Day)

March 1990
15. PAGE COUNT

86
16. SUPPLEMENTARY NOTATION

17. COSATI COOES

FIELD GROUP SUB. GR.

18. SUBJECT TERMS (Continu* on reverse if necessary and identify by block number)

Education, Software Engineering Education, Undergrat
Curriculum, Bachelor o£ Science in Software FnP

e

"8
19. ABSTRACT (Continue on never** if neceuary and identify by Mock numbert

Fundamental issues of software engineering education are presented and discussed in the
context of undergraduate programs. Included are discussions of the definition of soft-
ware engineering and its differences from computer science, the need for undergraduate
software engineering education, possible accreditation of undergraduate programs, and
prospects for professional certification and licensing of software engineers. The ob-
jectives and content of an undergraduate program are described, as are strategies for
the evolution and implementation of such programs. An appendix presents a report on
the 1989 SEI Workshop on an Undergraduate Software Engineering Curriculum.

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED £] SAME AS APT. D OTIC USERS D

22a. NAME OF RESPONSIBLE INOIVIOUAL
KARL H. SHINGLER

OD FORM 1473. 83 APR

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED DISTRIBUTION
22b. TELEPHONE NUMBER

(Include Area Code)

412 268-7630

22c. OFFICE SYMBOL

SEI JP0
EDITION OF 1 JAN 73 IS OBSOLETE.

SECURITY CLASSIFICATION OF THIS PAGE

